login
A115168
Even numbers n such that n-2 and n+2 have the same number of prime divisors with multiplicity.
1
8, 10, 12, 24, 36, 38, 58, 60, 68, 84, 86, 100, 102, 110, 112, 120, 134, 138, 144, 154, 172, 178, 184, 188, 204, 216, 230, 240, 244, 276, 284, 288, 300, 302, 320, 342, 346, 360, 368, 372, 374, 378, 384, 394, 396, 404, 408, 428, 432, 436, 440, 456, 466, 472
OFFSET
1,1
LINKS
MAPLE
g(n) = forstep(x=4, n, 2, p1=bigomega(x-2); p2=bigomega(x+2); if(p1==p2, print(x", ")))
MATHEMATICA
Select[Range[4, 472, 2], PrimeOmega[# - 2] == PrimeOmega[# + 2] &] (* Amiram Eldar, Sep 23 2019 *)
2*Mean/@SequencePosition[Table[PrimeOmega[n], {n, 2, 500, 2}], {x_, _, x_}] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Jun 20 2021 *)
CROSSREFS
Sequence in context: A114873 A114621 A174156 * A303223 A112549 A112585
KEYWORD
easy,nonn
AUTHOR
Cino Hilliard, Mar 03 2006
STATUS
approved