login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A056729
If p | n, then p+1 | n+1 for composite n.
6
8, 27, 32, 63, 125, 128, 243, 275, 343, 399, 512, 567, 575, 935, 1127, 1331, 1539, 2015, 2048, 2187, 2197, 2303, 2783, 2915, 3087, 3125, 4563, 4913, 4991, 5103, 5719, 5831, 6399, 6859, 6875, 6929, 7055, 7139, 7625, 8192, 8855, 12167, 12719, 14027
OFFSET
1,1
COMMENTS
The Lucas-Carmichael numbers (A006972) are a subset.
Contains p^(2k+1) for any prime p, since (x+1) | (x^n + 1) when n is odd.
The only even numbers in this sequence are the composite odd powers of 2. [Emmanuel Vantieghem, Jul 08 2013]
If you try to extend this idea to the divisors, the only integer which is satisfied is 1.
Extension to prime power divisors is possible. [Emmanuel Vantieghem, Jul 08 2013]
LINKS
MATHEMATICA
fQ[n_] := !PrimeQ[n] && Union[ Mod[ n + 1, Transpose[ FactorInteger[n]][[1]] + 1]] == {0}; Select[ Range[20000], fQ[#] &]
PROG
(PARI) is(n)=my(f=factor(n)[, 1]); for(i=1, #f, if((n+1)%(f[i]+1), return(0))); !isprime(n) \\ Charles R Greathouse IV, Jan 15 2015
CROSSREFS
Cf. A006972.
Sequence in context: A115169 A070495 A270421 * A070265 A354179 A262675
KEYWORD
nonn
AUTHOR
Robert G. Wilson v, Aug 31 2000
STATUS
approved