|
|
A115156
|
|
Smallest number having exactly n ones in binary representation and also exactly n prime factors (counted with multiplicity).
|
|
2
|
|
|
2, 6, 28, 54, 405, 486, 2808, 4860, 21870, 40824, 192456, 524160, 708588, 4059072, 14348907, 58576608, 123731712, 462944160, 1837080000, 3874204890, 11809800000, 48183984000, 65086642152, 339033848832, 1360965131136, 2928898896840, 6595446404736
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,1
|
|
COMMENTS
|
Does a(n) exist for every n? It exists for large enough n due to a result of Drmota, Mauduit, & Rivat, see A061712. T. D. Noe's conjecture there implies that a(n) < 4*4^n. - Charles R Greathouse IV, Jul 30 2011
|
|
LINKS
|
|
|
EXAMPLE
|
a(5) = 3*3*3*3*5 = 405_10 = 110010101_2.
a(10) = 2*2*2*3*3*3*3*3*3*7 = 40824_10 = 1001111101111000_2.
a(18) = 2*2*2*2*2*3*3*3*3*3*3*3*3*3*3*5*7*7 = 462944160_10 = 11011100101111111011110100000_2. - Robert G. Wilson v
|
|
MATHEMATICA
|
Lk[n_] := Block[{k = 2^n - 1}, While[n != Plus @@ IntegerDigits[k, 2] || n != Plus @@ (Transpose[FactorInteger@k][[2]]), k++ ]; k]; L = {}; Do[v = Lk[n]; Print[{n, v}]; AppendTo[L, v], {n, 2, 16}]; L (Resta)
t = Table[0, {20}]; f[n_] := Block[{b = Count[ IntegerDigits[n, 2], 1], e = Plus @@ Last /@ FactorInteger@n}, If[b == e, b, 0]]; Do[ a = f@n; If[a > 0 && t[[a]] == 0, t[[a]] = n; Print[{a, n}]], {n, 550000000}]; t (* Robert G. Wilson v *)
f[n_] := Min[ Select[ FromDigits[ #, 2] & /@ Permutations[ Join[ Table[0, {Max[6, 2n/3]}], Table[1, {n}]]], Plus @@ Last /@ FactorInteger@# == n &]]; Array[f, 18] (* Robert G. Wilson v *)
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
|
|
EXTENSIONS
|
|
|
STATUS
|
approved
|
|
|
|