login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Smallest number having exactly n ones in binary representation and also exactly n prime factors (counted with multiplicity).
2

%I #19 Mar 21 2015 04:48:11

%S 2,6,28,54,405,486,2808,4860,21870,40824,192456,524160,708588,4059072,

%T 14348907,58576608,123731712,462944160,1837080000,3874204890,

%U 11809800000,48183984000,65086642152,339033848832,1360965131136,2928898896840,6595446404736

%N Smallest number having exactly n ones in binary representation and also exactly n prime factors (counted with multiplicity).

%C A001222(a(n)) = A000120(a(n)) = n; subsequence of A071814.

%C a(n) is roughly 3^n and so far 4 <= a(n)/3^(n-2) <= 15. - _Robert G. Wilson v_

%C Does a(n) exist for every n? It exists for large enough n due to a result of Drmota, Mauduit, & Rivat, see A061712. _T. D. Noe_'s conjecture there implies that a(n) < 4*4^n. - _Charles R Greathouse IV_, Jul 30 2011

%e a(5) = 3*3*3*3*5 = 405_10 = 110010101_2.

%e a(10) = 2*2*2*3*3*3*3*3*3*7 = 40824_10 = 1001111101111000_2.

%e a(18) = 2*2*2*2*2*3*3*3*3*3*3*3*3*3*3*5*7*7 = 462944160_10 = 11011100101111111011110100000_2. - _Robert G. Wilson v_

%t Lk[n_] := Block[{k = 2^n - 1}, While[n != Plus @@ IntegerDigits[k, 2] || n != Plus @@ (Transpose[FactorInteger@k][[2]]), k++ ]; k]; L = {}; Do[v = Lk[n]; Print[{n, v}]; AppendTo[L, v], {n, 2, 16}]; L (Resta)

%t t = Table[0, {20}]; f[n_] := Block[{b = Count[ IntegerDigits[n, 2], 1], e = Plus @@ Last /@ FactorInteger@n}, If[b == e, b, 0]]; Do[ a = f@n; If[a > 0 && t[[a]] == 0, t[[a]] = n; Print[{a, n}]], {n, 550000000}]; t (* _Robert G. Wilson v_ *)

%t f[n_] := Min[ Select[ FromDigits[ #, 2] & /@ Permutations[ Join[ Table[0, {Max[6, 2n/3]}], Table[1, {n}]]], Plus @@ Last /@ FactorInteger@# == n &]]; Array[f, 18] (* _Robert G. Wilson v_ *)

%K nonn

%O 1,1

%A _Reinhard Zumkeller_, Jan 14 2006

%E a(14)-a(17) from _Giovanni Resta_, Jan 18 2006

%E a(14)-a(18) from _Robert G. Wilson v_, Jan 18 2006

%E a(19) from _Robert G. Wilson v_, Jan 22 2006

%E a(20)-a(24) from _Donovan Johnson_, Apr 07 2008

%E a(25)-a(27) from _Donovan Johnson_, Jul 30 2011