login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A115155
Expansion of (eta(q^3) * eta(q^5))^3 + (eta(q) * eta(q^15))^3 in powers of q.
3
1, 1, -3, -3, 5, -3, 0, -7, 9, 5, 0, 9, 0, 0, -15, 5, -14, 9, -22, -15, 0, 0, 34, 21, 25, 0, -27, 0, 0, -15, 2, 33, 0, -14, 0, -27, 0, -22, 0, -35, 0, 0, 0, 0, 45, 34, -14, -15, 49, 25, 42, 0, -86, -27, 0, 0, 66, 0, 0, 45, -118, 2, 0, 13, 0, 0, 0, 42, -102, 0, 0
OFFSET
1,3
COMMENTS
The terms of A136549 differ only in sign from this sequence. - Michael Somos, Jun 14 2023
LINKS
Steven R. Finch, Modular forms on SL_2(Z), December 28, 2005, see page 5. [Cached copy, with permission of the author]
FORMULA
a(n) is multiplicative with a(3^e) = (-3)^e, a(5^e) = 5^e, a(p^e) = p^e if e even else 0 if p == 7, 11, 13, 14 (mod 15), a(p^e) = a(p) * a(p^(e-1)) - p^2 * a(p^(e-2)) if p == 1, 2, 4, 8 (mod 15).
G.f. is a period 1 Fourier series which satisfies f(-1 / (15 t)) = 15^(3/2) (t/i)^3 f(t) where q = exp(2 Pi i t). - Michael Somos, Jun 23 2012
a(2^n) = A106853(n).
a(n) = A030220(n) + A136599(n). - Michael Somos, Oct 13 2015
EXAMPLE
G.f. = q + q^2 - 3*q^3 - 3*q^4 + 5*q^5 - 3*q^6 - 7*q^8 + 9*q^9 + 5*q^10 +...
MATHEMATICA
a[ n_] := SeriesCoefficient[ q (QPochhammer[ q^3] QPochhammer[ q^5])^3 + q^2 (QPochhammer[ q] QPochhammer[ q^15])^3, {q, 0, n}]; (* Michael Somos, May 24 2013 *)
PROG
(PARI) {a(n) = my(A); if( n<1, 0, n--; A = x * O(x^n); polcoeff( (eta(x^3 + A) * eta(x^5 + A))^3 + x * (eta(x + A) * eta(x^15 + A))^3, n))};
(Sage) A = CuspForms( Gamma1(15), 3, prec=80) . basis(); A[0] + A[1] - 3*A[2] - 3*A[3] + 5*A[4] - 3*A[5] - 7*A[7]; # Michael Somos, May 28 2013
(Magma) A := Basis( CuspForms( Gamma1(15), 3), 80); A[1] + A[2] - 3*A[3] - 3*A[4] + 5*A[5] - 3*A[6] - 7*A[8]; /* Michael Somos, Oct 13 2015 */
CROSSREFS
KEYWORD
sign,mult
AUTHOR
Michael Somos, Jan 14 2006
STATUS
approved