login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A112772 Semiprimes of the form 6n+2. 5
14, 26, 38, 62, 74, 86, 122, 134, 146, 158, 194, 206, 218, 254, 278, 302, 314, 326, 362, 386, 398, 422, 446, 458, 482, 542, 554, 566, 614, 626, 662, 674, 698, 734, 746, 758, 794, 818, 842, 866, 878, 914, 926, 974, 998, 1046, 1082, 1094, 1142, 1154, 1202, 1214 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

COMMENTS

{6} + A112772 + A112774 = A100484 = 2*A000040.

Rado showed that for a given Bernoulli number B_n there exist infinitely many Bernoulli numbers B_m having the same denominator. As a special case, if n = 2p where p is an odd prime p == 1 (mod 3), then the denominator of the Bernoulli number B_n equals 6. - Bernd C. Kellner, Mar 21 2018

LINKS

Harvey P. Dale, Table of n, a(n) for n = 1..1000

R. Rado, A note on the Bernoullian numbers, J. London Math. Soc. 9 (1934) 88-90.

FORMULA

a(n) = 2 * A002476(n) = 6 * A024892(n) + 2.

denominator(Bernoulli(a(n)) = 6. - Bernd C. Kellner, Mar 21 2018

MATHEMATICA

Select[6Range[0, 300]+2, PrimeOmega[#]==2&] (* Harvey P. Dale, Oct 04 2011 *)

PROG

(MAGMA) IsSemiprime:= func<n | &+[d[2]: d in Factorization(n)] eq 2>; [s: n in [0..210] | IsSemiprime(s) where s is 6*n + 2]; // Vincenzo Librandi, Sep 22 2012

(PARI) 2*select(n->n%3==1, primes(100)) \\ Charles R Greathouse IV, Sep 22 2012

CROSSREFS

Subsequence of A051222. - Bernd C. Kellner, Mar 21 2018

Sequence in context: A191992 A082773 A242395 * A155505 A086258 A063799

Adjacent sequences:  A112769 A112770 A112771 * A112773 A112774 A112775

KEYWORD

easy,nonn

AUTHOR

Jonathan Vos Post and Ray Chandler, Oct 15 2005

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified June 19 13:00 EDT 2021. Contains 345129 sequences. (Running on oeis4.)