The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation. Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A242395 Number of equilateral triangles (sides length = 1) that intersect the circumference of a circle of radius n centered at (1/2,0). 4
 14, 26, 38, 58, 70, 82, 98, 110, 122, 142, 154, 166, 182, 194, 206, 218, 238, 250, 262, 278, 290, 302, 322, 334, 346, 362, 374, 386, 398, 418, 430, 442, 458, 470, 482, 502, 514, 526, 542, 554, 566, 578, 598, 610, 622, 638, 650, 662, 682, 694, 706, 722, 734, 746, 766, 778, 790 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS For all n, it seems to be the case that transits of the circumference occurring exactly at the corners do not exist. The pattern repeats itself at a half circle. The triangle count in a quadrant by rows can be arranged as an irregular triangle as shown in the illustration. The rows count (A242396) is equal to the case centered at (0,0), A242394. LINKS Kival Ngaokrajang, Illustration of initial terms PROG (Small Basic) a=3 iy=0 For n = 1 To 100    r=n/(math.Power(3, 0.5)/2)    If r-math.Floor(r)>=0.5 Then      ix=1    Else      ix=0    EndIf    If n=1 Then      d1=0    Else      If ix=iy Then        d1=3      Else        if ix=1 and iy=0 Then          d1=5        Else          d1=4        EndIf      EndIf    EndIf    iy=ix    a[n]=a[n-1]+d1    TextWindow.Write(2*(2*a[n]+1)+", ") EndFor CROSSREFS Cf. A242118. Sequence in context: A240227 A191992 A082773 * A112772 A155505 A086258 Adjacent sequences:  A242392 A242393 A242394 * A242396 A242397 A242398 KEYWORD nonn AUTHOR Kival Ngaokrajang, May 13 2014 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 13 23:41 EDT 2021. Contains 343868 sequences. (Running on oeis4.)