OFFSET
0,4
COMMENTS
Inverse of A112552.
The n-th row polynomial (in descending powers of x) is equal to the n-th degree Taylor polynomial of the polynomial function (1 - x^4)*(1 + x^2)^n about 0. For example, when n = 6, (1 - x^4)*(1 + x^2)^6 = 1 + 6*x^2 + 14*x^4 + 14*x^6 + O(x^8). - Peter Bala, Feb 19 2018
LINKS
G. C. Greubel, Rows n = 0..50 of the triangle, flattened
Peter Bala, A 4-parameter family of embedded Riordan arrays
FORMULA
Sum_{k=0..n} T(n, k) = binomial(n+1, floor(n/2)) = A037952(n+1).
T(n, k) = ((1 + (-1)^(n-k))/2)*binomial(n, floor((n-k)/2)) - binomial(n, floor((n-k-4)/2 )). - Peter Bala, Feb 19 2018
EXAMPLE
Triangle begins
1;
0, 1;
2, 0, 1;
0, 3, 0, 1;
5, 0, 4, 0, 1;
0, 9, 0, 5, 0, 1;
14, 0, 14, 0, 6, 0, 1;
MAPLE
seq(seq((1 + (-1)^(n-k))/2*( binomial(n, floor((n - k)/2)) - binomial(n, floor((n - k - 4)/2 )) ), k = 0..n), n = 0..10); # Peter Bala, Feb 19 2018
MATHEMATICA
T[n_, k_] := (1 + (-1)^(n-k))/2 (Binomial[n, Floor[(n-k)/2]] - Binomial[n, Floor[(n-k-4)/2]]);
Table[T[n, k], {n, 0, 12}, {k, 0, n}] (* Jean-François Alcover, Jun 13 2019 *)
PROG
(Sage) # Algorithm of L. Seidel (1877)
# Prints the first n rows of a signed version of the triangle.
def Signed_A112554_triangle(n) :
D = [0]*(n+4); D[1] = 1
b = False; h = 2
for i in range(2*n+2) :
if b :
for k in range(h, 0, -1) : D[k] += D[k-1]
h += 1
else :
for k in range(1, h, 1) : D[k] -= D[k+1]
b = not b
if b and i > 0 : print([D[z] for z in (2..h-1)])
Signed_A112554_triangle(13) # Peter Luschny, May 01 2012
(Magma)
A112554:= func< n, k | ((1+(-1)^(n-k))/2)*(Binomial(n, Floor((n-k)/2)) - Binomial(n, Floor((n-k-4)/2))) >;
[A112554(n, k): k in [0..n], n in [0..15]]; // G. C. Greubel, Jan 13 2022
CROSSREFS
KEYWORD
AUTHOR
Paul Barry, Sep 13 2005
STATUS
approved