login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A112553
Expansion of 1/( (1+x^2)*(1-x+x^2) ).
5
1, 1, -1, -2, 0, 2, 1, -1, -1, 0, 0, 0, 1, 1, -1, -2, 0, 2, 1, -1, -1, 0, 0, 0, 1, 1, -1, -2, 0, 2, 1, -1, -1, 0, 0, 0, 1, 1, -1, -2, 0, 2, 1, -1, -1, 0, 0, 0, 1, 1, -1, -2, 0, 2, 1, -1, -1, 0, 0, 0, 1, 1, -1, -2, 0, 2, 1, -1, -1, 0, 0, 0
OFFSET
0,4
COMMENTS
Row sums of A112552.
FORMULA
a(n) = (1/4)*Sum_{k=0..n} (-1)^floor((n-k)/2)*Sum_{j=0..n} (1+(-1)^(n-j))*(1+(-1)^(j-k)) *binomial((j+k)/2, k).
From G. C. Greubel, Jan 13 2022: (Start)
a(n) = Sum_{k=0..n} (-1)^floor((n-k)/2)*((1 + (-1)^(n+k))/2)*binomial((n+k+2)/2, k+1).
a(n + 12) = a(n). (End)
a(n) = -a(-4-n) for all n in Z. - Michael Somos, Feb 15 2024
EXAMPLE
G.f. = 1 + x - x^2 - 2*x^3 + 2*x^5 + x^6 - x^7 - x^8 + x^12 + x^13 - x^14 - 2*x^15 + ... - Michael Somos, Feb 15 2024
MATHEMATICA
Join[{1}, PadRight[{}, 120, {1, -1, -2, 0, 2, 1, -1, -1, 0, 0, 0, 1}]] (* G. C. Greubel, Jan 13 2022 *)
a[ n_] := {1, 1, -1, -2, 0, 2, 1, -1, -1, 0, 0, 0}[[1 + Mod[n, 12]]]; (* Michael Somos, Feb 15 2024 *)
PROG
(PARI) {a(n) = [1, 1, -1, -2, 0, 2, 1, -1, -1, 0, 0, 0][1 + n%12]}; /* Michael Somos, Feb 15 2024 */
CROSSREFS
KEYWORD
easy,sign
AUTHOR
Paul Barry, Sep 13 2005
STATUS
approved