login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Expansion of 1/( (1+x^2)*(1-x+x^2) ).
5

%I #22 Feb 16 2024 09:56:24

%S 1,1,-1,-2,0,2,1,-1,-1,0,0,0,1,1,-1,-2,0,2,1,-1,-1,0,0,0,1,1,-1,-2,0,

%T 2,1,-1,-1,0,0,0,1,1,-1,-2,0,2,1,-1,-1,0,0,0,1,1,-1,-2,0,2,1,-1,-1,0,

%U 0,0,1,1,-1,-2,0,2,1,-1,-1,0,0,0

%N Expansion of 1/( (1+x^2)*(1-x+x^2) ).

%C Row sums of A112552.

%H G. C. Greubel, <a href="/A112553/b112553.txt">Table of n, a(n) for n = 0..1000</a>

%H <a href="/index/Rec#order_04">Index entries for linear recurrences with constant coefficients</a>, signature (1,-2,1,-1).

%F a(n) = (1/4)*Sum_{k=0..n} (-1)^floor((n-k)/2)*Sum_{j=0..n} (1+(-1)^(n-j))*(1+(-1)^(j-k)) *binomial((j+k)/2, k).

%F From _G. C. Greubel_, Jan 13 2022: (Start)

%F a(n) = Sum_{k=0..n} (-1)^floor((n-k)/2)*((1 + (-1)^(n+k))/2)*binomial((n+k+2)/2, k+1).

%F a(n + 12) = a(n). (End)

%F a(n) = -a(-4-n) for all n in Z. - _Michael Somos_, Feb 15 2024

%e G.f. = 1 + x - x^2 - 2*x^3 + 2*x^5 + x^6 - x^7 - x^8 + x^12 + x^13 - x^14 - 2*x^15 + ... - _Michael Somos_, Feb 15 2024

%t Join[{1}, PadRight[{}, 120, {1,-1,-2,0,2,1,-1,-1,0,0,0,1}]] (* _G. C. Greubel_, Jan 13 2022 *)

%t a[ n_] := {1, 1, -1, -2, 0, 2, 1, -1, -1, 0, 0, 0}[[1 + Mod[n, 12]]]; (* _Michael Somos_, Feb 15 2024 *)

%o (PARI) {a(n) = [1, 1, -1, -2, 0, 2, 1, -1, -1, 0, 0, 0][1 + n%12]}; /* _Michael Somos_, Feb 15 2024 */

%Y Cf. A010892, A112552, A112554.

%K easy,sign

%O 0,4

%A _Paul Barry_, Sep 13 2005