The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A320602 Irregular table read by rows: T(n,k) = (k+s)^(k+s) mod n, s = lcm(n, A002322(n)) = A174824(n), 0 <= k <= s - 1. 1
 0, 0, 1, 0, 1, 1, 0, 1, 2, 0, 1, 0, 3, 0, 1, 4, 2, 1, 0, 1, 3, 1, 4, 0, 1, 1, 3, 1, 0, 1, 2, 4, 4, 0, 1, 4, 3, 4, 5, 0, 1, 4, 6, 4, 3, 1, 0, 1, 1, 4, 2, 1, 6, 0, 1, 2, 5, 1, 5, 1, 0, 1, 4, 1, 4, 4, 6, 0, 1, 1, 3, 2, 6, 1, 0, 1, 2, 2, 1, 2, 6, 0, 1, 0, 3, 0, 5, 0, 7 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,9 COMMENTS A174824(n) is the period of the sequence {k^k mod n}. If n > 1 is factored as Product_{i=1..m} (p_i)^(e_i), then {k^k mod n : k > e} is purely periodic, e = max_{i=1..m} (p_i)*floor((e_i - 1)/(p_i)). For n > 1, {k^k mod n : k > 0} is purely periodic iff e_i <= p_i, 1 <= i <= m. LINKS FORMULA T(n,k) = k^k mod n iff: let p be any prime factor of k, then n is not divisible by p^(k+1). EXAMPLE Table starts n = 1: 0, n = 2: 0, 1, n = 3: 0, 1, 1, 0, 1, 2, n = 4: 0, 1, 0, 3, n = 5: 0, 1, 4, 2, 1, 0, 1, 3, 1, 4, 0, 1, 1, 3, 1, 0, 1, 2, 4, 4, n = 6: 0, 1, 4, 3, 4, 5, n = 7: 0, 1, 4, 6, 4, 3, 1, 0, 1, 1, 4, 2, 1, 6, 0, 1, 2, 5, 1, 5, 1, 0, 1, 4, 1, 4, 4, 6, 0, 1, 1, 3, 2, 6, 1, 0, 1, 2, 2, 1, 2, 6, n = 8: 0, 1, 0, 3, 0, 5, 0, 7, n = 9: 0, 1, 4, 0, 4, 2, 0, 7, 1, 0, 1, 5, 0, 4, 7, 0, 7, 8, n = 10: 0, 1, 4, 7, 6, 5, 6, 3, 6, 9, 0, 1, 6, 3, 6, 5, 6, 7, 4, 9, PROG (PARI) T(n, k) = my(s=lcm(n, lcm(znstar(n)[2]))); lift(Mod(k+s, n)^(k+s)) tabf(nn) = for(n=1, nn, for(k=0, lcm(n, lcm(znstar(n)[2])))-1, print1(T(n, k), ", ")); print); CROSSREFS Cf. A000312, A002322, A174824. Sequence in context: A127368 A112552 A048154 * A134511 A112554 A120616 Adjacent sequences:  A320599 A320600 A320601 * A320603 A320604 A320605 KEYWORD nonn,tabf AUTHOR Jianing Song, Oct 17 2018 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 15 02:21 EDT 2021. Contains 343909 sequences. (Running on oeis4.)