login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A108708
Maximum side length in Pythagorean triangles with hypotenuse n.
2
0, 0, 0, 0, 4, 0, 0, 0, 0, 8, 0, 0, 12, 0, 12, 0, 15, 0, 0, 16, 0, 0, 0, 0, 24, 24, 0, 0, 21, 24, 0, 0, 0, 30, 28, 0, 35, 0, 36, 32, 40, 0, 0, 0, 36, 0, 0, 0, 0, 48, 45, 48, 45, 0, 44, 0, 0, 42, 0, 48, 60, 0, 0, 0, 63, 0, 0, 60, 0, 56, 0, 0, 55, 70, 72, 0, 0, 72, 0, 64, 0, 80, 0, 0, 84, 0, 63, 0
OFFSET
1,5
LINKS
EXAMPLE
a(5) is 4 as the maximum side (other than the hypotenuse) a right triangle with integer sides and hypotenuse 5 can have.
MATHEMATICA
f[n_] := Block[{k = n - 1, m = Sqrt[n/2]}, While[k > m && !IntegerQ[Sqrt[n^2 - k^2]], k-- ]; If[k <= m, 0, k]]; Table[ f[n], {n, 90}] (* Robert G. Wilson v, Jun 21 2005 *)
PROG
(PARI) first(n) = {my(lh = List(), res = vector(n)); for(u = 2, sqrtint(n), for(v = 1, u, if (u^2+v^2 > n, break); if ((gcd(u, v) == 1) && (0 != (u-v)%2), for (i = 1, n, if (i*(u^2+v^2) > n, break); listput(lh, i*(u^2+v^2)); res[i*(u^2+v^2)] = max(res[i*(u^2+v^2)], max(i*(u^2 - v^2), i*2*u*v)); ); ); ); ); for(i = 1, n, if(res[i] == oo, res[i] = 0)); res } \\ David A. Corneth, Apr 10 2021, adapted from A009000
CROSSREFS
A046080 gives the number of Pythagorean triangles with hypotenuse n.
Sequence in context: A276580 A331437 A351572 * A290322 A274948 A005925
KEYWORD
nonn
AUTHOR
EXTENSIONS
More terms from Robert G. Wilson v, Jun 21 2005
STATUS
approved