login
A290322
Sum modulo n of all units u in Z/nZ such that Phi(5,u) is a unit, where Phi is the cyclotomic polynomial.
1
1, 0, 0, 4, 0, 0, 0, 0, 9, 1, 0, 0, 0, 3, 0, 0, 0, 0, 8, 0, 12, 0, 0, 20, 0, 0, 0, 0, 18, 1, 0, 24, 0, 14, 0, 0, 0, 0, 16, 1, 0, 0, 24, 9, 0, 0, 0, 0, 45, 0, 0, 0, 0, 14, 0, 0, 0, 0, 36, 1, 32, 0, 0, 13, 24, 0, 0, 0, 14, 1, 0, 0, 0, 15, 0, 28, 0, 0, 32, 0, 42, 0
OFFSET
2,4
COMMENTS
Conjecture: If n is divisible by 5 then a(n) > 0. - Robert Israel, Jan 23 2024
LINKS
MAPLE
with(numtheory): m:=5: for n from 2 to 100 do S:={}: for a from 1 to n-1 do if gcd(a, n)=1 and gcd(cyclotomic(m, a), n)=1 then S:={op(S), a}: fi: od: print(sum(op(i, S), i=1..nops(S)) mod n): od:
MATHEMATICA
Table[Mod[Total@ Select[Range[n - 1], CoprimeQ[#, n] && CoprimeQ[Cyclotomic[5, #], n] &], n], {n, 83}] (* Michael De Vlieger, Jul 29 2017 *)
PROG
(PARI) a(n) = sum(k=0, n-1, k*((gcd(n, k)==1) && (gcd(n, polcyclo(5, k))==1))) % n; \\ Michel Marcus, Jul 29 2017
CROSSREFS
Sequence in context: A331437 A351572 A108708 * A274948 A005925 A333037
KEYWORD
nonn,look
STATUS
approved