login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Maximum side length in Pythagorean triangles with hypotenuse n.
2

%I #19 Jan 02 2022 01:13:42

%S 0,0,0,0,4,0,0,0,0,8,0,0,12,0,12,0,15,0,0,16,0,0,0,0,24,24,0,0,21,24,

%T 0,0,0,30,28,0,35,0,36,32,40,0,0,0,36,0,0,0,0,48,45,48,45,0,44,0,0,42,

%U 0,48,60,0,0,0,63,0,0,60,0,56,0,0,55,70,72,0,0,72,0,64,0,80,0,0,84,0,63,0

%N Maximum side length in Pythagorean triangles with hypotenuse n.

%H David A. Corneth, <a href="/A108708/b108708.txt">Table of n, a(n) for n = 1..10000</a>

%e a(5) is 4 as the maximum side (other than the hypotenuse) a right triangle with integer sides and hypotenuse 5 can have.

%t f[n_] := Block[{k = n - 1, m = Sqrt[n/2]}, While[k > m && !IntegerQ[Sqrt[n^2 - k^2]], k-- ]; If[k <= m, 0, k]]; Table[ f[n], {n, 90}] (* _Robert G. Wilson v_, Jun 21 2005 *)

%o (PARI) first(n) = {my(lh = List(), res = vector(n)); for(u = 2, sqrtint(n), for(v = 1, u, if (u^2+v^2 > n, break); if ((gcd(u, v) == 1) && (0 != (u-v)%2), for (i = 1, n, if (i*(u^2+v^2) > n, break); listput(lh, i*(u^2+v^2)); res[i*(u^2+v^2)] = max(res[i*(u^2+v^2)], max(i*(u^2 - v^2), i*2*u*v)); ); ); ); ); for(i = 1, n, if(res[i] == oo, res[i] = 0)); res } \\ _David A. Corneth_, Apr 10 2021, adapted from A009000

%Y Cf. A083025, A046083, A046084, A009000, A009003, A108707.

%Y A046080 gives the number of Pythagorean triangles with hypotenuse n.

%K nonn

%O 1,5

%A _Sébastien Dumortier_, Jun 20 2005

%E More terms from _Robert G. Wilson v_, Jun 21 2005