login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A106271
Row sums of number triangle A106270.
2
1, 0, -2, -7, -21, -63, -195, -624, -2054, -6916, -23712, -82498, -290510, -1033410, -3707850, -13402695, -48760365, -178405155, -656043855, -2423307045, -8987427465, -33453694485, -124936258125, -467995871775, -1757900019099, -6619846420551, -24987199492703
OFFSET
0,3
COMMENTS
From Petros Hadjicostas, Jul 15 2019: (Start)
To prove R. J. Mathar's conjecture, let A(x) be the g.f. of the current sequence. We note first that
Sum_{n >= 2} (n+1)*a(n)*x^n = (x*A(x))' - 1,
Sum_{n >= 2} (1-5*n)*a(n-1)*x^n = x*A(x) - 5*x*(x*A(x))' + 4*x, and
Sum_{n >= 2} 2*(2*n-1)*a(n-2)*x^n = 4*x*(x^2*A(x))' - 2*x^2*A(x).
Adding these equations (side by side), we get
Sum_{n >= 2} ((n+1)*a(n) + (1-5*n)*a(n-1) + 2*(2*n-1)*a(n-2))*x^n = 0,
which proves the conjecture. (End)
LINKS
FORMULA
G.f.: c(x)*sqrt(1 - 4x)/(1 - x), where c(x) is the g.f. of A000108.
a(n) = Sum_{k = 0..n} 2*0^(n-k) - C(n-k), where C(m) = A000108(m) (Catalan numbers).
a(n) = 2 - A014137(n) for n >= 0 and a(n) = 1 - A014138(n) for n >= 0. - Alexander Adamchuk, Feb 23 2007, corrected by Vaclav Kotesovec, Jul 22 2019
Conjecture: (n+1)*a(n) + (1-5*n)*a(n-1) + 2*(2*n-1)*a(n-2) = 0. - R. J. Mathar, Nov 09 2012
a(n) ~ -2^(2*n + 2) / (3*sqrt(Pi)*n^(3/2)). - Vaclav Kotesovec, Jul 22 2019
MATHEMATICA
Table[1 - Sum[(2n)!/n!/(n+1)!, {n, 1, k}], {k, 0, 30}] (* Alexander Adamchuk, Feb 23 2007 *)
CROSSREFS
Cf. A014138, A014137 (partial sums of Catalan numbers (A000108)).
Cf. A106270.
Sequence in context: A353094 A291411 A159972 * A027990 A037520 A218836
KEYWORD
easy,sign
AUTHOR
Paul Barry, Apr 28 2005
EXTENSIONS
More terms from Alexander Adamchuk, Feb 23 2007
STATUS
approved