login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A106268
Number triangle T(n,k) = (-1)^(n-k)*binomial(k-n, n-k) = (0^(n-k) + binomial(2*(n-k), n-k))/2 if k <= n, 0 otherwise; Riordan array (1/(2-C(x)), x) where C(x) is g.f. for Catalan numbers A000108.
3
1, 1, 1, 3, 1, 1, 10, 3, 1, 1, 35, 10, 3, 1, 1, 126, 35, 10, 3, 1, 1, 462, 126, 35, 10, 3, 1, 1, 1716, 462, 126, 35, 10, 3, 1, 1, 6435, 1716, 462, 126, 35, 10, 3, 1, 1, 24310, 6435, 1716, 462, 126, 35, 10, 3, 1, 1, 92378, 24310, 6435, 1716, 462, 126, 35, 10, 3, 1, 1
OFFSET
0,4
COMMENTS
Triangle includes A088218.
Inverse is A106270.
FORMULA
T(n, k) = (-1)^(n-k)*binomial(k-n, n-k).
T(n, k) = (1/2)*(0^(n-k) + binomial(2*(n-k), n-k)).
Sum_{k=0..n} T(n, k) = A024718(n) (row sums).
Sum_{k=0..floor(n/2)} T(n-k, k) = A106269(n) (diagonal sums).
Bivariate g.f.: Sum_{n, k >= 0} T(n,k)*x^n*y^k = (1/2) * (1/(1 - x*y)) * (1 + 1/sqrt(1 - 4*x)). - Petros Hadjicostas, Jul 15 2019
EXAMPLE
Triangle (with rows n >= 0 and columns k >= 0) begins as follows:
1;
1, 1;
3, 1, 1;
10, 3, 1, 1;
35, 10, 3, 1, 1;
126, 35, 10, 3, 1, 1;
...
Production matrix begins:
1, 1;
2, 0, 1;
5, 0, 0, 1;
14, 0, 0, 0, 1;
42, 0, 0, 0, 0, 1;
132, 0, 0, 0, 0, 0, 1;
429, 0, 0, 0, 0, 0, 0, 1;
... - Philippe Deléham, Oct 02 2014
MATHEMATICA
T[n_, k_]:= (-1)^(n-k)*Binomial[k-n, n-k];
Table[T[n, k], {n, 0, 12}, {k, 0, n}]//Flatten (* G. C. Greubel, Jan 10 2023 *)
PROG
(PARI) trg(nn) = {for (n=1, nn, for (k=1, n, print1(binomial(k-n, n-k)*(-1)^(n-k), ", "); ); print(); ); } \\ Michel Marcus, Oct 03 2014
(Magma)
A106268:= func< n, k | k eq n select 1 else (n-k+1)*Catalan(n-k)/2 >;
[A106268(n, k): k in [0..n], n in [0..12]]; // G. C. Greubel, Jan 10 2023
(SageMath)
def A106268(n, k): return (1/2)*(0^(n-k) + (n-k+1)*catalan_number(n-k))
flatten([[A106268(n, k) for k in range(n+1)] for n in range(13)]) # G. C. Greubel, Jan 10 2023
CROSSREFS
Cf. A000108, A024718 (row sums), A088218, A106269 (diagonal sums), A106270.
Sequence in context: A267392 A267553 A268115 * A267655 A263864 A060543
KEYWORD
easy,nonn,tabl
AUTHOR
Paul Barry, Apr 28 2005
STATUS
approved