login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A268115
T(n,k)=Number of nXk arrays containing k copies of 0..n-1 with every element equal to or 1 greater than any north or west neighbors modulo n and the upper left element equal to 0.
10
1, 1, 1, 1, 3, 1, 1, 10, 2, 1, 1, 35, 8, 2, 1, 1, 126, 30, 5, 2, 1, 1, 462, 114, 25, 5, 2, 1, 1, 1716, 414, 182, 15, 5, 2, 1, 1, 6435, 1561, 1256, 111, 15, 5, 2, 1, 1, 24310, 6227, 7396, 1687, 67, 15, 5, 2, 1, 1, 92378, 25712, 39891, 23522, 761, 67, 15, 5, 2, 1, 1, 352716
OFFSET
1,5
COMMENTS
Table starts
.1.1..1..1...1....1.....1......1........1..........1............1.............1
.1.3.10.35.126..462..1716...6435....24310......92378.......352716.......1352078
.1.2..8.30.114..414..1561...6227....25712.....107071.......445688.......1860037
.1.2..5.25.182.1256..7396..39891...210384....1168317......7080023......45942141
.1.2..5.15.111.1687.23522.253472..2290853...18470974....140294987....1065068657
.1.2..5.15..67..761.24745.726627.15303976..251565608...3466082679...42227611356
.1.2..5.15..67..457..9204.586844.36708187.1582675968..49970797654.1250823466190
.1.2..5.15..67..457..5628.194567.22971957.3039274773.276165720476
.1.2..5.15..67..457..5628.119908..7088277
.1.2..5.15..67..457..5628.119908
LINKS
EXAMPLE
Some solutions for n=6 k=4
..0..1..1..1....0..0..1..2....0..0..1..1....0..1..2..2....0..0..1..1
..1..2..2..2....1..1..2..3....1..1..2..2....1..2..3..3....0..1..2..2
..2..3..3..3....1..2..3..4....2..2..3..3....2..3..4..4....1..2..3..3
..3..4..4..4....2..3..4..5....3..3..4..4....3..4..5..5....2..3..4..4
..4..5..5..5....3..4..5..0....4..4..5..5....4..5..0..0....3..4..5..5
..5..0..0..0....4..5..5..0....5..5..0..0....5..0..1..1....4..5..5..0
CROSSREFS
Row 2 is A001700(n-1).
Row 3 is A266319.
Sequence in context: A158695 A267392 A267553 * A106268 A267655 A263864
KEYWORD
nonn,tabl
AUTHOR
R. H. Hardin, Jan 26 2016
STATUS
approved