login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A158695
Table T(n,3) read by rows with T(n,1)=a,T(n,2)=b,T(n,3)=c and ((a*M(n))^3)*((a*M(n))^3+b)+c is prime for the least a with least b and c = -1 or 1 and M(n) = n-th Mersenne prime.
0
1, -1, -1, 1, 1, -1, 1, -1, -1, 3, -1, 1, 10, 1, -1, 2, 1, -1, 8, -1, -1, 15, 1, 1, 4, 1, -1, 90, 1, 1, 72, 1, -1, 33, 1, -1, 114, 1, -1, 15, 1, 1, 37, -1, -1, 516, 1, 1, 301, 1, -1, 2029, -1, -1, 54, 1, -1, 23, -1, -1, 4756, -1, -1, 65, 1, 1, 696, 1, -1, 8503, -1, -1, 3693, 1, 1
OFFSET
1,10
COMMENTS
All primes certified.
For M(26), a(26)=4166, b(26)=1, c(26)=1.
For M(27), a(27)=5880, b(27)=-1, c(27)=-1.
For M(28), a(28)=3997, b(28)=-1, c(28)=-1; with the following expression being a certified prime ((3997*(2^86243-1))^3)*((3997*(2^86243-1))^3-1)-1.
EXAMPLE
((1*(2^2-1))^3)*((1*(2^2-1))^3-1)-1=701 prime 2^2-1=M(1) a(1)=1 b(1)=-1 c(1)=-1
((1*(2^3-1))^3)*((1*(2^3-1))^3+1)-1=117991 prime 2^3-1=M(2) a(2)=1 b(2)=1 c(2)=-1
((1*(2^5-1))^3)*((1*(2^5-1))^3-1)-1=887473889 prime 2^5-1=M(3) a(3)=1 b(3)=-1 c(3)=-1
CROSSREFS
Sequence in context: A267197 A267401 A267338 * A267392 A267553 A268115
KEYWORD
sign,tabf
AUTHOR
Pierre CAMI, Mar 24 2009
STATUS
approved