login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A158693
a(n) = 66*n^2 - 1.
2
65, 263, 593, 1055, 1649, 2375, 3233, 4223, 5345, 6599, 7985, 9503, 11153, 12935, 14849, 16895, 19073, 21383, 23825, 26399, 29105, 31943, 34913, 38015, 41249, 44615, 48113, 51743, 55505, 59399, 63425, 67583, 71873, 76295, 80849, 85535, 90353, 95303, 100385, 105599
OFFSET
1,1
COMMENTS
The identity (66*n^2 - 1)^2 - (1089*n^2 - 33)*(2*n)^2 = 1 can be written as a(n)^2 - A158692(n)*A005843(n)^2 = 1.
LINKS
Vincenzo Librandi, X^2-AY^2=1, Math Forum, 2007. [Wayback Machine link]
FORMULA
G.f.: x*(-65 - 68*x + x^2)/(x-1)^3.
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3).
From Amiram Eldar, Mar 21 2023: (Start)
Sum_{n>=1} 1/a(n) = (1 - cot(Pi/sqrt(66))*Pi/sqrt(66))/2.
Sum_{n>=1} (-1)^(n+1)/a(n) = (cosec(Pi/sqrt(66))*Pi/sqrt(66) - 1)/2. (End)
MATHEMATICA
LinearRecurrence[{3, -3, 1}, {65, 263, 593}, 50] (* Vincenzo Librandi, Feb 20 2012 *)
PROG
(Magma) I:=[65, 263, 593]; [n le 3 select I[n] else 3*Self(n-1)-3*Self(n-2)+1*Self(n-3): n in [1..40]]; // Vincenzo Librandi, Feb 20 2012
(PARI) for(n=1, 40, print1(66*n^2 - 1", ")); \\ Vincenzo Librandi, Feb 20 2012
CROSSREFS
Sequence in context: A152023 A369498 A165798 * A365874 A319617 A300162
KEYWORD
nonn,easy
AUTHOR
Vincenzo Librandi, Mar 24 2009
EXTENSIONS
Comment rewritten and formula replaced by R. J. Mathar, Oct 22 2009
STATUS
approved