login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A165798
a(n) = 65*n^2.
1
65, 260, 585, 1040, 1625, 2340, 3185, 4160, 5265, 6500, 7865, 9360, 10985, 12740, 14625, 16640, 18785, 21060, 23465, 26000, 28665, 31460, 34385, 37440, 40625, 43940, 47385, 50960, 54665, 58500, 62465, 66560, 70785, 75140, 79625, 84240
OFFSET
1,1
COMMENTS
Alternative definition: Numbers m>0 such that 65*m is square.
Also the sum of the areas of the two squares that equals the area of a rectangle with whole number sides using the formula x^2 + y^2 = (x+y+sqrt(2*x*y))(x+y-sqrt(2*x*y))where the substitution y=8*x obtains the whole number sides of the rectangle. Thus x^2 + (8x)^2 =(13*x)(5*x) or 65*x^2 = 13*x*(5*x)
x Squares Sum Rectangle (l,w) Area
1 1,64 65 13,5 65
2 4,256 260 26,10 260 -Larry J Zimmermann, Feb 28 2013
From G. C. Greubel, Apr 08 2016: (Start)
a(n) (mod 10) = 5*A000035(n).
a(n) (mod 10) = 5*A059841(n-1). (End)
FORMULA
From R. J. Mathar, Sep 28 2009: (Start)
a(n) = 65*A000290(n).
G.f.: 65*x*(1+x)/(1-x)^3. (End)
From G. C. Greubel, Apr 08 2016: (Start)
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3).
E.g.f.: 65*x*(1+x)*exp(x). (End)
MATHEMATICA
Table[65*n^2, {n, 1, 40}] (* Vincenzo Librandi, Mar 14 2012 *)
LinearRecurrence[{3, -3, 1}, {65, 260, 585}, 40] (* Harvey P. Dale, Jan 12 2020 *)
PROG
(Magma) [65*n^2: n in [1..40]]; // Vincenzo Librandi, Mar 14 2012
(PARI) a(n)=65*n^2 \\ Charles R Greathouse IV, Jun 17 2017
CROSSREFS
Sequence in context: A031694 A152023 A369498 * A158693 A365874 A319617
KEYWORD
nonn,easy,less
AUTHOR
Vincenzo Librandi, Sep 27 2009
EXTENSIONS
Definition simplified by R. J. Mathar, Sep 29 2009
STATUS
approved