login
A353094
a(1) = 2; for n > 1, a(n) = 3*a(n-1) + 3 - n.
7
2, 7, 21, 62, 184, 549, 1643, 4924, 14766, 44291, 132865, 398586, 1195748, 3587233, 10761687, 32285048, 96855130, 290565375, 871696109, 2615088310, 7845264912, 23535794717, 70607384131, 211822152372, 635466457094, 1906399371259, 5719198113753, 17157594341234
OFFSET
1,1
FORMULA
G.f.: x * (2 - 3*x)/((1 - x)^2 * (1 - 3*x)).
a(n) = 5*a(n-1) - 7*a(n-2) + 3*a(n-3).
a(n) = A000340(n-1) + n.
a(n) = (3^(n+1) + 2*n - 3)/4.
a(n) = Sum_{k=0..n-1} (3 - n + k) * 3^k.
E.g.f.: exp(x)*(3*exp(2*x) + 2*x - 3)/4. - Stefano Spezia, May 28 2023
MATHEMATICA
LinearRecurrence[{5, -7, 3}, {2, 7, 21}, 28] (* Amiram Eldar, Apr 23 2022 *)
PROG
(PARI) my(N=30, x='x+O('x^N)); Vec(x*(2-3*x)/((1-x)^2*(1-3*x)))
(PARI) a(n) = (3^(n+1)+2*n-3)/4;
(PARI) b(n, k) = sum(j=0, n-1, (k-n+j)*k^j);
a(n) = b(n, 3);
KEYWORD
nonn,easy
AUTHOR
Seiichi Manyama, Apr 23 2022
STATUS
approved