OFFSET
1,1
COMMENTS
a(n)/10^n converges to 80/81 = 0.987654320987654320...
LINKS
Harry J. Smith, Table of n, a(n) for n = 1..150
Index entries for linear recurrences with constant coefficients, signature (12,-21,10).
FORMULA
From Colin Barker, Sep 15 2014: (Start)
a(n) = 12*a(n-1) - 21*a(n-2) + 10*a(n-3).
G.f.: x*(10*x - 9)/((x - 1)^2*(10*x - 1)). (End)
E.g.f.: exp(x)*(80*exp(9*x) + 9*x - 80)/81. - Stefano Spezia, May 28 2023
EXAMPLE
Curious multiplications:
1*8 + 1 = 9;
12*8 + 2 = 98;
123*8 + 3 = 987;
1234*8 + 4 = 9876;
12345*8 + 5 = 98765;
123456*8 + 6 = 987654;
1234567*8 + 7 = 9876543;
12345678*8 + 8 = 98765432;
123456789*8 + 9 = 987654321.
- Vincenzo Librandi, Aug 07 2010 and Philippe Deléham, Mar 09 2014
MAPLE
MATHEMATICA
Table[(10^n - 1)*(80/81) + n/9, {n, 20}] (* Wesley Ivan Hurt, Mar 10 2014 *)
LinearRecurrence[{12, -21, 10}, {9, 98, 987}, 30] (* Harvey P. Dale, Aug 20 2023 *)
PROG
(PARI) { a=0; for (n=1, 150, a=10*a + 10 - n; write("b064617.txt", n, " ", a) ) } \\ Harry J. Smith, Sep 20 2009
(PARI) Vec(x*(10*x-9)/((x-1)^2*(10*x-1)) + O(x^100)) \\ Colin Barker, Sep 15 2014
CROSSREFS
KEYWORD
nonn,base,easy
AUTHOR
Henry Bottomley, Sep 26 2001
EXTENSIONS
More terms from Colin Barker, Sep 15 2014
STATUS
approved