login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A064617
a(n) = (10^n - 1)*(80/81) + n/9.
9
9, 98, 987, 9876, 98765, 987654, 9876543, 98765432, 987654321, 9876543210, 98765432099, 987654320988, 9876543209877, 98765432098766, 987654320987655, 9876543209876544, 98765432098765433, 987654320987654322, 9876543209876543211, 98765432098765432100, 987654320987654320989
OFFSET
1,1
COMMENTS
a(n)/10^n converges to 80/81 = 0.987654320987654320...
FORMULA
a(n) = 10*a(n-1) + 10 - n = (19 - n)*A002275(n) - A064616(n) = 10*A002275(n) - A014824(n).
From Colin Barker, Sep 15 2014: (Start)
a(n) = 12*a(n-1) - 21*a(n-2) + 10*a(n-3).
G.f.: x*(10*x - 9)/((x - 1)^2*(10*x - 1)). (End)
E.g.f.: exp(x)*(80*exp(9*x) + 9*x - 80)/81. - Stefano Spezia, May 28 2023
EXAMPLE
Curious multiplications:
1*8 + 1 = 9;
12*8 + 2 = 98;
123*8 + 3 = 987;
1234*8 + 4 = 9876;
12345*8 + 5 = 98765;
123456*8 + 6 = 987654;
1234567*8 + 7 = 9876543;
12345678*8 + 8 = 98765432;
123456789*8 + 9 = 987654321.
- Vincenzo Librandi, Aug 07 2010 and Philippe Deléham, Mar 09 2014
MAPLE
A064617:=n->(10^n-1)*(80/81)+n/9; seq(A064617(n), 1..20); # Wesley Ivan Hurt, Mar 10 2014
MATHEMATICA
Table[(10^n - 1)*(80/81) + n/9, {n, 20}] (* Wesley Ivan Hurt, Mar 10 2014 *)
LinearRecurrence[{12, -21, 10}, {9, 98, 987}, 30] (* Harvey P. Dale, Aug 20 2023 *)
PROG
(PARI) { a=0; for (n=1, 150, a=10*a + 10 - n; write("b064617.txt", n, " ", a) ) } \\ Harry J. Smith, Sep 20 2009
(PARI) Vec(x*(10*x-9)/((x-1)^2*(10*x-1)) + O(x^100)) \\ Colin Barker, Sep 15 2014
CROSSREFS
KEYWORD
nonn,base,easy
AUTHOR
Henry Bottomley, Sep 26 2001
EXTENSIONS
More terms from Colin Barker, Sep 15 2014
STATUS
approved