

A225608


The largest ndigit number where the first k digits are divisible by k.


1



9, 98, 987, 9876, 98765, 987654, 9876545, 98765456, 987654564, 9876545640, 98765456405, 987606963096, 9876069630960, 98760696309604, 987606963096045, 9876062430364208, 98485872309636009, 984450645096105672, 9812523240364656789, 96685896604836004260
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,1


COMMENTS

There are 25 terms in the sequence; the 25digit number 3608528850368400786036725 is the largest number to satisfy the requirements.


LINKS

Shyam Sunder Gupta, Table of n, a(n) for n = 1..25


EXAMPLE

There are nine onedigit numbers divisible by 1 and largest is 9 so a(1)=9. For 2 digit numbers, the second digit must be even (0,2,4,6,8) that make it divisible by 2, which gives 98 as largest to satisfy the requirement so a(2)=98.


MATHEMATICA

a=Table[j, {j, 9}]; r=2; t={}; While[!a == {}, n=Length[a]; nmax=Last[a]; k=1; b={}; While[!k>n, z0=a[[k]]; Do[z=10*z0+j; If[Mod[z, r]==0, b=Append[b, z]], {j, 0, 9}]; k++]; AppendTo[t, nmax]; a=b; r++]; t


CROSSREFS

Sequence in context: A147637 A057933 A064617 * A220490 A024115 A066557
Adjacent sequences: A225605 A225606 A225607 * A225609 A225610 A225611


KEYWORD

nonn,base,fini


AUTHOR

Shyam Sunder Gupta, Aug 04 2013


STATUS

approved



