login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A064615
Numbers of the form m * 6^k for k >= 0 and m > 0 with gcd(m, 6) = 1.
6
1, 5, 6, 7, 11, 13, 17, 19, 23, 25, 29, 30, 31, 35, 36, 37, 41, 42, 43, 47, 49, 53, 55, 59, 61, 65, 66, 67, 71, 73, 77, 78, 79, 83, 85, 89, 91, 95, 97, 101, 102, 103, 107, 109, 113, 114, 115, 119, 121, 125, 127, 131, 133, 137, 138, 139, 143, 145, 149, 150, 151, 155
OFFSET
1,2
COMMENTS
These are the fixed points of A064614, a permutation of natural numbers: A064614(a(n)) = a(n), for all n.
Numbers n such that exponent of highest power of 2 dividing n is equal to exponent of highest power of 3 dividing n. - Juri-Stepan Gerasimov, Sep 01 2016
All primes >3 are terms. - Zak Seidov, Sep 02 2016
LINKS
FORMULA
a(n) = 5n/2 + O(log n). - Charles R Greathouse IV, Sep 02 2016
MAPLE
q:= n-> is(padic[ordp](n, 2)=padic[ordp](n, 3)):
select(q, [$1..200])[]; # Alois P. Heinz, Oct 28 2021
MATHEMATICA
okQ[n_] := IntegerExponent[n, 2] == IntegerExponent[n, 3];
Select[Range[200], okQ] (* Jean-François Alcover, Oct 28 2021 *)
PROG
(PARI) is(n)=valuation(n, 2)==valuation(n, 3) \\ Charles R Greathouse IV, Sep 02 2016
(Magma) [n: n in [1..200] |Valuation(n, 2) eq Valuation(n, 3)]; // Vincenzo Librandi, Sep 02 2016
CROSSREFS
Cf. A064614.
Sequence in context: A184811 A230995 A362929 * A300957 A139205 A374960
KEYWORD
nonn
AUTHOR
Reinhard Zumkeller, Sep 25 2001
STATUS
approved