login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A291411
p-INVERT of (1,1,0,0,0,0,...), where p(S) = 1 - 2 S - S^2 + S^3.
2
2, 7, 21, 63, 189, 567, 1699, 5092, 15260, 45731, 137046, 410697, 1230768, 3688339, 11053134, 33123790, 99264648, 297474121, 891463923, 2671519536, 8005951162, 23992058879, 71898875923, 215464974683, 645700711159, 1935021731510, 5798830691535, 17377808652745
OFFSET
0,1
COMMENTS
Suppose s = (c(0), c(1), c(2), ...) is a sequence and p(S) is a polynomial. Let S(x) = c(0)*x + c(1)*x^2 + c(2)*x^3 + ... and T(x) = (-p(0) + 1/p(S(x)))/x. The p-INVERT of s is the sequence t(s) of coefficients in the Maclaurin series for T(x). Taking p(S) = 1 - S gives the "INVERT" transform of s, so that p-INVERT is a generalization of the "INVERT" transform (e.g., A033453).
See A291382 for a guide to related sequences.
FORMULA
G.f.: -(((-1 + x) (1 + x) (2 + x) (1 + x + x^2))/(1 - 2 x - 3 x^2 - x^3 + 2 x^4 + 3 x^5 + x^6)).
a(n) = 2*a(n-1) + 3*a(n-2) + a(n-3) - 2*a(n-4) - 3*a(n-5) - a(n-6) for n >= 7.
MATHEMATICA
z = 60; s = x + x^2; p = 1 - 2 s - s^2 + s^3;
Drop[CoefficientList[Series[s, {x, 0, z}], x], 1] (* A019590 *)
Drop[CoefficientList[Series[1/p, {x, 0, z}], x], 1] (* A291411 *)
PROG
(GAP)
a:=[2, 7, 21, 63, 189, 567];; for n in [7..10^2] do a[n]:=2*a[n-1]+3*a[n-2]+a[n-3]-2*a[n-4]-3*a[n-5]-a[n-6]; od; a; # Muniru A Asiru, Sep 12 2017
CROSSREFS
Sequence in context: A320811 A005666 A353094 * A159972 A106271 A027990
KEYWORD
nonn,easy
AUTHOR
Clark Kimberling, Sep 07 2017
STATUS
approved