login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A291412 p-INVERT of (1,1,0,0,0,0,...), where p(S) = 1 - S - 2 S^2 + S^3. 2
1, 4, 10, 24, 62, 156, 391, 987, 2484, 6252, 15744, 39636, 99788, 251237, 632525, 1592480, 4009326, 10094104, 25413498, 63982496, 161086011, 405559431, 1021059816, 2570679048, 6472089792, 16294506424, 41023988824, 103284359545, 260034658537, 654678248796 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

Suppose s = (c(0), c(1), c(2), ...) is a sequence and p(S) is a polynomial. Let S(x) = c(0)*x + c(1)*x^2 + c(2)*x^3 + ... and T(x) = (-p(0) + 1/p(S(x)))/x. The p-INVERT of s is the sequence t(s) of coefficients in the Maclaurin series for T(x). Taking p(S) = 1 - S gives the "INVERT" transform of s, so that p-INVERT is a generalization of the "INVERT" transform (e.g., A033453).

See A291382 for a guide to related sequences.

LINKS

Clark Kimberling, Table of n, a(n) for n = 0..1000

Index entries for linear recurrences with constant coefficients, signature (1, 3, 3, -1, -3, -1)

FORMULA

G.f.: -(((1 + x) (-1 - 2 x - x^2 + 2 x^3 + x^4))/(1 - x - 3 x^2 - 3 x^3 + x^4 + 3 x^5 + x^6)).

a(n) = a(n-1) + 3*a(n-2) + 3*a(n-3) - a(n-4) - 3*a(n-5) - a(n-6) for n >= 7.

MATHEMATICA

z = 60; s = x + x^2; p = 1 - s - 2 s^2 + s^3;

Drop[CoefficientList[Series[s, {x, 0, z}], x], 1]  (* A019590 *)

Drop[CoefficientList[Series[1/p, {x, 0, z}], x], 1]  (* A291412 *)

PROG

(GAP)

a:=[1, 4, 10, 24, 62, 156];;  for n in [7..10^2] do a[n]:=a[n-1]+3*a[n-2]+3*a[n-3]-a[n-4]-3*a[n-5]-a[n-6]; od; a; # Muniru A Asiru, Sep 12 2017

CROSSREFS

Cf. A019590, A291382.

Sequence in context: A230954 A190169 A212330 * A001868 A217696 A223014

Adjacent sequences:  A291409 A291410 A291411 * A291413 A291414 A291415

KEYWORD

nonn,easy

AUTHOR

Clark Kimberling, Sep 07 2017

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified June 28 19:10 EDT 2022. Contains 354907 sequences. (Running on oeis4.)