login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A105483
Number of partitions of {1...n} containing one string of 3 consecutive integers, counted within a block.
2
1, 2, 8, 32, 141, 672, 3451, 18962, 110882, 686866, 4489422, 30853656, 222276063, 1674067342, 13149209956, 107481488424, 912490408782, 8031867965568, 73181346933680, 689194657064660, 6699707386510583, 67143409071264516, 692926011957479445, 7356058078964945382
OFFSET
3,2
LINKS
Augustine O. Munagi, Set Partitions with Successions and Separations, Int. J. Math and Math. Sc. 2005:3 (2005), 451-463.
FORMULA
a(n) = Sum_{k=1..n} c(n, k, 1), where c(n, k, 1) is the case r=1 of c(n, k, r) given by c(n, k, r)=c(n-1, k-1, r)+(k-1)c(n-1, k, r)+c(n-2, k-1, r)+(k-1)c(n-2, k, r)+c(n-1, k, r-1)-c(n-2, k-1, r-1)-(k-1)c(n-2, k, r-1), r=0, 1, .., n-k-1, k=1, 2, .., n-2r, c(n, k, 0) = Sum_{0..floor(n/2)} binomial(n-j, j)*S2(n-j-1, k-1).
EXAMPLE
a(5) = 8 because the partitions of {1,2,3,4,5} with one 3-string of consecutive integers are 1235/4, 1345/2, 15/234, 123/45, 12/345, 123/4/5, 1/234/5, 1/2/345.
MAPLE
c := proc(n, k, r) option remember ; local j ; if r =0 then add(binomial(n-j, j)*combinat[stirling2](n-j-1, k-1), j=0..floor(n/2)) ; else if r <0 or r > n-k-1 then RETURN(0) fi ; if n <1 then RETURN(0) fi ; if k <1 then RETURN(0) fi ; RETURN( c(n-1, k-1, r)+(k-1)*c(n-1, k, r)+c(n-2, k-1, r)+(k-1)*c(n-2, k, r) +c(n-1, k, r-1)-c(n-2, k-1, r-1)-(k-1)*c(n-2, k, r-1) ) ; fi ; end: A105483 := proc(n) local k ; add(c(n, k, 1), k=1..n) ; end: for n from 3 to 26 do printf("%d, ", A105483(n)) ; od ; # R. J. Mathar, Feb 20 2007
MATHEMATICA
S2[_, -1] = 0;
S2[n_, k_] = StirlingS2[n, k];
c [n_, k_, r_] := c[n, k, r] = Which[r == 0, Sum[Binomial[n - j, j]*S2[n - j - 1, k - 1], {j, 0, Floor[n/2]}], r < 0 || r > n - k - 1, 0, n < 1, 0, k < 1, 0, True, c[n - 1, k - 1, r] + (k - 1)*c[n - 1, k, r] + c[n - 2, k - 1, r] + (k - 1)*c[n - 2, k, r] + c[n - 1, k, r - 1] - c[n - 2, k - 1, r - 1] - (k - 1)*c[n - 2, k, r - 1]];
A105483[n_] := Sum[c[n, k, 1], {k, 1, n}];
Table[A105483[n], {n, 3, 26}] (* Jean-François Alcover, May 10 2023, after R. J. Mathar *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Augustine O. Munagi, Apr 10 2005
EXTENSIONS
More terms from R. J. Mathar, Feb 20 2007
STATUS
approved