OFFSET
5,2
REFERENCES
A. O. Munagi, Set Partitions with Successions and Separations, Int. J. Math and Math. Sc. 2005, no. 3 (2005), 451-463.
LINKS
A. O. Munagi, Set Partitions with Successions and Separations, IJMMS 2005:3 (2005), 451-463.
FORMULA
a(n) = binomial(n-1, 4)*Bell(n-5), the case r = 4 in the general case of r pairs: c(n, r) = binomial(n-1, r)*B(n-r-1).
Let A be the upper Hessenberg matrix of order n defined by: A[i,i-1]=-1, A[i,j]=binomial(j-1,i-1), (i<=j), and A[i,j]=0 otherwise. Then, for n>=4, a(n+1)=(-1)^(n-4)*coeff(charpoly(A,x),x^4). [Milan Janjic, Jul 08 2010]
E.g.f.: (1/4!) * Integral (x^4 * exp(exp(x) - 1)) dx. - Ilya Gutkovskiy, Jul 10 2020
EXAMPLE
a(6) = 5 because the partitions of {1,2,3,4,5,6} with 4 pairs of consecutive integers are 12345/6,1234/56,123/456,12/3456,1/23456.
MAPLE
seq(binomial(n-1, 4)*combinat[bell](n-5), n=5..25);
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Augustine O. Munagi, Apr 10 2005
STATUS
approved