login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A105486
Number of partitions of {1...n} containing 4 strings of 3 consecutive integers, where each string is counted within a block and a string of more than 3 consecutive integers are counted three at a time.
5
1, 2, 11, 50, 255, 1362, 7746, 46556, 294965, 1963865, 13703812, 99974851, 760824922, 6027441398, 49616033975, 423649629415, 3746306203604, 34259548971914, 323564415957687, 3152120868598090, 31638011553779137, 326825518800658174, 3471291152755614386
OFFSET
6,2
LINKS
Augustine O. Munagi, Set Partitions with Successions and Separations, Int. J. Math and Math. Sc., 2005:3 (2005), 451-463.
FORMULA
a(n) = Sum_{k=1..n} (c(n, k, 4), ), where c(n, k, 4) is the case r=4 of c(n, k, r) given by c(n, k, r)=c(n-1, k-1, r)+(k-1)c(n-1, k, r)+c(n-2, k-1, r)+(k-1)c(n-2, k, r)+c(n-1, k, r-1)-c(n-2, k-1, r-1)-(k-1)c(n-2, k, r-1), r=0, 1, .., n-k-1, k=1, 2, .., n-2r, c(n, k, 0) = Sum_{j= 0..floor(n/2)} binomial(n-j, j)*S2(n-j-1, k-1).
EXAMPLE
a(7) = 2 because the partitions of {1,...,7} with 4 strings of 3 consecutive integers are 123456/7, 1/234567.
MAPLE
c := proc(n, k, r) option remember ; local j ; if r =0 then add(binomial(n-j, j)*combinat[stirling2](n-j-1, k-1), j=0..floor(n/2)) ; else if r <0 or r > n-k-1 then RETURN(0) fi ; if n <1 then RETURN(0) fi ; if k <1 then RETURN(0) fi ; RETURN( c(n-1, k-1, r)+(k-1)*c(n-1, k, r)+c(n-2, k-1, r)+(k-1)*c(n-2, k, r) +c(n-1, k, r-1)-c(n-2, k-1, r-1)-(k-1)*c(n-2, k, r-1) ) ; fi ; end: A105486 := proc(n) local k ; add(c(n, k, 4), k=1..n) ; end: for n from 6 to 29 do printf("%d, ", A105486(n)) ; od ; # R. J. Mathar, Feb 20 2007
MATHEMATICA
S2[_, -1] = 0;
S2[n_, k_] = StirlingS2[n, k];
c[n_, k_, r_] := c[n, k, r] = Which [r == 0, Sum[Binomial[n - j, j]*S2[n - j - 1, k - 1], {j, 0, Floor[n/2]}], r < 0 || r > n - k - 1, 0, n < 1, 0, k < 1, 0, True, c[n - 1, k - 1, r] + (k - 1)*c[n - 1, k, r] + c[n - 2, k - 1, r] + (k - 1)*c[n - 2, k, r] + c[n - 1, k, r - 1] - c[n - 2, k - 1, r - 1] - (k - 1)*c[n - 2, k, r - 1]];
A105486[n_] := Sum[c[n, k, 4], {k, 1, n}];
Table[A105486[n], {n, 6, 29}] (* Jean-François Alcover, May 10 2023, after R. J. Mathar *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Augustine O. Munagi, Apr 10 2005
EXTENSIONS
More terms from R. J. Mathar, Feb 20 2007
STATUS
approved