OFFSET
4,2
LINKS
A. O. Munagi, Set partitions with successions and separations, Int. J. Math. Math. Sci. (IJMMS) vol 2005 no 3 (2005) pp 451-463.
FORMULA
a(n) = binomial(n-1, 3)*Bell(n-4), the case r = 3 in the general case of r pairs: c(n, r) = binomial(n-1, r)*B(n-r-1).
O.g.f. for c(n,r) is exp(-1)*Sum(x^(r+1)/(n!*(1-n*x)^(r+1)),n=0..infinity). - Vladeta Jovovic, Feb 05 2008
Let A be the upper Hessenberg matrix of order n defined by: A[i,i-1]=-1, A[i,j]=binomial(j-1,i-1), (i<=j), and A[i,j]=0 otherwise. Then, for n>=3, a(n+1)=(-1)^(n-3)*coeff(charpoly(A,x),x^3). [Milan Janjic, Jul 08 2010]
E.g.f.: (1/3!) * Integral (x^3 * exp(exp(x) - 1)) dx. - Ilya Gutkovskiy, Jul 10 2020
EXAMPLE
a(5) = 4 because the partitions of {1,2,3,4,5} with 3 pairs of consecutive integers are 1234/5,123/45,12/345,1/2345.
MAPLE
seq(binomial(n-1, 3)*combinat[bell](n-4), n=4..25);
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Augustine O. Munagi, Apr 10 2005
STATUS
approved