OFFSET
1,1
COMMENTS
Erroneous version of A225143.
The author must have used signed 32-bit integers to store 10 successive digits of zeta(2). This is the sequence you get by taking the 10-digit numbers modulo 2^32 and then listing primes between 10^9 and 2^31 = 2147483648. - Jens Kruse Andersen, Sep 15 2014
In other words, primes p in (10^9, 2^31) such that either p, p + 2^32 or p + 2^32*2 is the concatenation of 10 successive digits in the decimal expansion of Pi^2/6. - Jianing Song, Mar 14 2021
LINKS
Simon Plouffe, 10000 digits of Zeta(2).
Eric Weisstein, Riemann Zeta Function.
EXAMPLE
From Jianing Song, Mar 14 2021: (Start)
PROG
(PARI) A105383(n, x=Pi^2/6, m=10, silent=0)={m=10^m; for(k=1, default(realprecision), (isprime(p=x\.1^k%m%2^32)&&p*10>m&&p<2^31)||next; silent||print1(p", "); n--||return(p))} \\ Use e.g. \p999 to set precision to 999 digits. - M. F. Hasler, Nov 01 2014
CROSSREFS
Cf. A013661 (decimal expansion of Pi^2/6).
Cf. A103752 (a similar erroneous version).
Cf. (for Pi) A198175, A198170, A104824, A104825, A104826, A198171, A198172, A198173, A198174 and A104830 (a variant).
Cf. (for the Golden Ratio) A198177, A103773, A103789, A103793, A103808, A103809, A103810, A103811, A103812.
KEYWORD
nonn,base
AUTHOR
Andrew G. West (WestA(AT)wlu.edu), Apr 03 2005
EXTENSIONS
Definition updated by M. F. Hasler, Nov 01 2014
STATUS
approved