The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A105384 Expansion of x/(1 + x + x^2 + x^3 + x^4). 3
 0, 1, -1, 0, 0, 0, 1, -1, 0, 0, 0, 1, -1, 0, 0, 0, 1, -1, 0, 0, 0, 1, -1, 0, 0, 0, 1, -1, 0, 0, 0, 1, -1, 0, 0, 0, 1, -1, 0, 0, 0, 1, -1, 0, 0, 0, 1, -1, 0, 0, 0, 1, -1, 0, 0, 0, 1, -1, 0, 0, 0, 1, -1, 0, 0, 0, 1, -1, 0, 0, 0, 1, -1, 0, 0, 0, 1, -1, 0, 0, 0, 1, -1, 0, 0, 0, 1, -1, 0, 0, 0, 1, -1, 0, 0, 0, 1, -1, 0, 0, 0, 1, -1, 0, 0 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,1 COMMENTS Inverse binomial transform of A103311. A transform of the Fibonacci numbers: apply the Chebyshev transform (1/(1+x^2), x/(1+x^2)) followed by the binomial involution (1/(1-x),-x/(1-x)) followed by the inverse binomial transform (1/(1+x), x/(1+x)) (expressed as Riordan arrays) to the -F(n); equivalently, apply (1/(1+x^2),-x/(1+x^2)) to -F(n). Periodic {0,1,-1,0,0}. Essentially the same as A010891. - R. J. Mathar, Apr 07 2008 LINKS Index entries for linear recurrences with constant coefficients, signature (-1,-1,-1,-1). FORMULA Euler transform of length 5 sequence [ -1, 0, 0, 0, 1]. G.f.: x(1-x)/(1-x^5); a(n) = -sqrt(1/5 + 2*sqrt(5)/25)*cos(4*Pi*n/5 + Pi/10) + sqrt(5)*sin(4*Pi*n/5 + Pi/10)/5 + sqrt(1/5 - 2*sqrt(5)/25)*cos(2*Pi*n/5 + 3*Pi/10) + sqrt(5)*sin(2*Pi*n/5 + 3*Pi/10)/5. a(n) = -(1/5)*(((n+2) mod 5) - 2*((n+3) mod 5) + ((n+4) mod 5)) with n >= 0. - Paolo P. Lava, Nov 21 2006 a(n) = A010891(n-1). - R. J. Mathar, Apr 07 2008 CROSSREFS Sequence in context: A261185 A093692 A254114 * A288694 A292077 A327256 Adjacent sequences:  A105381 A105382 A105383 * A105385 A105386 A105387 KEYWORD easy,sign AUTHOR Paul Barry, Apr 02 2005 EXTENSIONS Corrected by N. J. A. Sloane, Nov 05 2005 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified April 7 00:47 EDT 2020. Contains 333291 sequences. (Running on oeis4.)