

A103809


Primes from merging of 5 successive digits in decimal expansion of the Golden Ratio, (1+sqrt(5))/2.


24



39887, 36563, 98057, 28621, 41893, 93911, 39113, 68917, 26633, 53693, 36931, 69317, 93179, 31793, 56383, 44381, 38149, 12203, 92461, 43207, 32077, 20771, 87433, 44221, 47809, 24007, 51797, 97883, 56249, 89069, 90697, 10427, 11177
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,1


COMMENTS

Leading zeros are not permitted, so each term is 5 digits in length.  Harvey P. Dale, Oct 23 2011


REFERENCES

Mohammad K. Azarian, Problem 123, Missouri Journal of Mathematical Sciences, Vol. 10, No. 3, Fall 1998, p. 176. Solution published in Vol. 12, No. 1, Winter 2000, pp. 6162.


LINKS

Vincenzo Librandi, Table of n, a(n) for n = 1..1000
The Golden Ratio as explained at MathWorld.com
Expansion of the Golden Ratio done to 20,000 digits as part of project Gutenberg.


MATHEMATICA

With[{len=5}, FromDigits/@Select[Partition[RealDigits[GoldenRatio, 10, 1000][[1]], len, 1], PrimeQ[FromDigits[#]] && IntegerLength[ FromDigits[#]] == len&]] (* Harvey P. Dale, Oct 23 2011 *)


CROSSREFS

Sequence in context: A235255 A234920 A116220 * A257192 A257185 A254985
Adjacent sequences: A103806 A103807 A103808 * A103810 A103811 A103812


KEYWORD

nonn,base


AUTHOR

Andrew G. West (WestA(AT)wlu.edu), Mar 29 2005


EXTENSIONS

Offset changed from 0 to 1 by Vincenzo Librandi, Apr 22 2013


STATUS

approved



