OFFSET
1,2
LINKS
G. C. Greubel, Table of n, a(n) for n = 1..110
Milan Janjic, Enumerative Formulas for Some Functions on Finite Sets
FORMULA
a(n) = Sum_{j=0..n} (-24)^j*binomial(n,j)*(4*n-4*j)!.
MAPLE
a:=n->sum((-24)^i*binomial(n, i)*(4*n-4*i)!, i=0..n).
MATHEMATICA
Table[Sum[(-24)^j*Binomial[n, j]*(4*n-4*j)!, {j, 0, n}], {n, 1, 20}] (* G. C. Greubel, May 11 2019 *)
PROG
(PARI) {a(n) = sum(j=0, n, (-24)^j*binomial(n, j)*(4*(n-j))!)}; \\ G. C. Greubel, May 11 2019
(Magma) [(&+[(-24)^j*Binomial(n, j)*Factorial(4*n-4*j): j in [0..n]]): n in [1..20]]; // G. C. Greubel, May 11 2019
(Sage) [sum((-24)^j*binomial(n, j)*factorial(4*n-4*j) for j in (0..n)) for n in (1..20)] # G. C. Greubel, May 11 2019
(GAP) List([1..20], n-> Sum([0..n], j-> (-24)^j*Binomial(n, j)* Factorial(4*n-4*j))); # G. C. Greubel, May 11 2019
CROSSREFS
KEYWORD
nonn
AUTHOR
Milan Janjic, Apr 09 2007
STATUS
approved