login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A116218
If X_1,...,X_n is a partition of a 2n-set X into 2-blocks (or pairs) then a(n) is equal to the number of permutations f of X such that f(X_i) != X_i for all i=1,...n.
7
1, 0, 20, 592, 35088, 3252608, 437765440, 80766186240, 19580003614976, 6038002429456384, 2308538525796209664, 1071858241055770480640, 594103565746026102722560, 387504996819754568329494528, 293818792387460667662661926912, 256273357771747968541309427187712
OFFSET
0,3
FORMULA
a(n) = Sum_{i=0..n} (-2)^i*binomial(n,i)*(2*n-2*i)!.
Recurrence: a(n) = 2*(n-1)*(2*n+1)*a(n-1) + 4*(n-1)*(4*n-3)*a(n-2) + 16*(n-2)*(n-1)*a(n-3). - Vaclav Kotesovec, Mar 20 2014
a(n) ~ sqrt(Pi) * 2^(2*n+1) * n^(2*n+1/2) / exp(2*n). - Vaclav Kotesovec, Mar 20 2014
MAPLE
a:=n->sum((-2)^i*binomial(n, i)*(2*n-2*i)!, i=0..n);
MATHEMATICA
Table[Sum[(-2)^i*Binomial[n, i]*(2*n-2*i)!, {i, 0, n}], {n, 1, 20}] (* Vaclav Kotesovec, Mar 20 2014 *)
PROG
(PARI) for(n=1, 25, print1(sum(i=0, n, (-2)^i*binomial(n, i)*(2*n-2*i)!), ", ")) \\ G. C. Greubel, Mar 18 2017
CROSSREFS
Cf. A374980.
Sequence in context: A259057 A184123 A027407 * A035279 A015268 A202577
KEYWORD
nonn
AUTHOR
Milan Janjic, Apr 08 2007, corrected Apr 13 2007
EXTENSIONS
a(0)=1 prepended by Alois P. Heinz, Aug 05 2024
STATUS
approved