login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Primes from merging of 5 successive digits in decimal expansion of the Golden Ratio, (1+sqrt(5))/2.
24

%I #29 Feb 21 2023 17:18:18

%S 39887,36563,98057,28621,41893,93911,39113,68917,26633,53693,36931,

%T 69317,93179,31793,56383,44381,38149,12203,92461,43207,32077,20771,

%U 87433,44221,47809,24007,51797,97883,56249,89069,90697,10427,11177

%N Primes from merging of 5 successive digits in decimal expansion of the Golden Ratio, (1+sqrt(5))/2.

%C Leading zeros are not permitted, so each term is 5 digits in length. - _Harvey P. Dale_, Oct 23 2011

%H Vincenzo Librandi, <a href="/A103809/b103809.txt">Table of n, a(n) for n = 1..1000</a>

%H Simon Plouffe, <a href="http://www.gutenberg.org/ebooks/634">Expansion of the Golden Ratio</a> done to 20,000 digits as part of project Gutenberg.

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/GoldenRatio.html">Golden Ratio</a>.

%t With[{len=5},FromDigits/@Select[Partition[RealDigits[GoldenRatio, 10, 1000][[1]],len,1],PrimeQ[FromDigits[#]] && IntegerLength[ FromDigits[#]] == len&]] (* _Harvey P. Dale_, Oct 23 2011 *)

%K nonn,base

%O 1,1

%A Andrew G. West (WestA(AT)wlu.edu), Mar 29 2005

%E Offset changed from 0 to 1 by _Vincenzo Librandi_, Apr 22 2013