OFFSET
1,1
COMMENTS
A.K. Devaraj conjectured that these numbers are exactly Carmichael numbers. It was proved (see Alekseyev link) that every Carmichael number is indeed a Devaraj number, but the converse is not true. Devaraj numbers that are not Carmichael are given by A104017.
These numbers can't be even, since phi(N) is always even (N>2) but p1=2 implies that gcd{pi-1}=1 and N-1 is odd. - M. F. Hasler, Apr 03 2009
LINKS
Charles R Greathouse IV, Table of n, a(n) for n = 1..1000
Max Alekseyev, Pomerance's proof, June 2005.
PROG
(PARI) Devaraj() = for(n=2, 10^8, f=factorint(n); if(vecmax(f[, 2])>1, next); f=f[, 1]; r=length(f); if(r==1, next); d=f[1]-1; p=f[1]-1; for(i=2, r, d=gcd(d, f[i]-1); p*=f[i]-1); if( ((n-1)^(r-2)*d^2)%p==0, print1(" ", n)) )
(PARI) isA104016(n)= local(f=factor(n)); vecmax(f[, 2])==1 && #(f*=[1, -1]~)>1 && gcd(f)^2*(n-1)^(#f-2)%prod(i=1, #f, f[i])==0
/* To print the list: */ forstep( n=3, 10^6, 2, vecmax((f=factor(n))[, 2])>1 && next; #(f*=[1, -1]~)>1 || next; gcd(f)^2*(n-1)^(#f-2)%prod(i=1, #f, f[i]) || print1(n", "))
/* The following version could be efficient for large omega(n) */
isA104016(n) = issquarefree(n) && !isprime(n) && Mod(n-1, prod(i=1, #n=factor(n)*[1, -1]~, n[i]))^(#n-2)*gcd(n)^2==0 \\ M. F. Hasler, Apr 03 2009
CROSSREFS
KEYWORD
nonn
AUTHOR
Max Alekseyev, Feb 25 2005
STATUS
approved