OFFSET
1,1
COMMENTS
It contains all the Carmichael numbers A002997 and the numbers 5005, 28405, 47125, 98605, ...
Carmichael numbers m for which A309132(m) < m are 561, 1105, 46657, 52633, ...
If m is a Carmichael number, then not only is A309132(m) <= m, but in fact A309132(m) | m. (Proof. As m is a Carmichael number, m | D(m-1) where B(k) = N(k)/D(k) is the k-th Bernoulli number. So I := N(m-1) + D(m-1)/m is an integer. Hence A309132(m) = Denominator(I/m) is a divisor of m.) - Jonathan Sondow, Jul 17 2019
Conjecture: Composite numbers m such that A309132(m) | m are only the Carmichael numbers. - Amiram Eldar and Thomas Ordowski, Jul 18 2019
MATHEMATICA
f[n_] := Denominator[Numerator[BernoulliB[n - 1]] / n + Denominator[BernoulliB[n - 1]] / n^2]; Select[Range[10^4], CompositeQ[#] && f[#] <= # &]
PROG
(PARI) f(n) = my(b=bernfrac(n-1)); denominator(numerator(b)/n + denominator(b)/n^2); \\ A309132
isok(n) = (n>1) && !isprime(n) && (f(n) <= n); \\ Michel Marcus, Jul 17 2019
CROSSREFS
KEYWORD
nonn,hard,more
AUTHOR
Amiram Eldar and Thomas Ordowski, Jul 17 2019
STATUS
approved