login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A309235
Composite numbers m such that A309132(m) <= m.
4
561, 1105, 1729, 2465, 2821, 5005, 6601, 8911, 10585, 15841, 28405, 29341, 41041, 46657, 47125, 52633, 62745, 63973, 75361, 98605, 101101
OFFSET
1,1
COMMENTS
It contains all the Carmichael numbers A002997 and the numbers 5005, 28405, 47125, 98605, ...
Carmichael numbers m for which A309132(m) < m are 561, 1105, 46657, 52633, ...
If m is a Carmichael number, then not only is A309132(m) <= m, but in fact A309132(m) | m. (Proof. As m is a Carmichael number, m | D(m-1) where B(k) = N(k)/D(k) is the k-th Bernoulli number. So I := N(m-1) + D(m-1)/m is an integer. Hence A309132(m) = Denominator(I/m) is a divisor of m.) - Jonathan Sondow, Jul 17 2019
Conjecture: Composite numbers m such that A309132(m) | m are only the Carmichael numbers. - Amiram Eldar and Thomas Ordowski, Jul 18 2019
If A309132(m) | m and m | A027642(m-1), then A309132(m) | A027642(m-1). It seems that, according to the data, a composite m is a Carmichael number if and only if A309132(m) | A027642(m-1). - Thomas Ordowski, Jul 19 2019
MATHEMATICA
f[n_] := Denominator[Numerator[BernoulliB[n - 1]] / n + Denominator[BernoulliB[n - 1]] / n^2]; Select[Range[10^4], CompositeQ[#] && f[#] <= # &]
PROG
(PARI) f(n) = my(b=bernfrac(n-1)); denominator(numerator(b)/n + denominator(b)/n^2); \\ A309132
isok(n) = (n>1) && !isprime(n) && (f(n) <= n); \\ Michel Marcus, Jul 17 2019
CROSSREFS
Cf. A002997, A027641, A027642, A309132 (see the last conjecture).
Sequence in context: A006971 A270698 A218483 * A104016 A002997 A355039
KEYWORD
nonn,hard,more
AUTHOR
Amiram Eldar and Thomas Ordowski, Jul 17 2019
STATUS
approved