login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Devaraj numbers: squarefree r-prime-factor (r>1) integers N=p1*...*pr such that phi(N)=(p1-1)*...*(pr-1) divides gcd(p1-1,...,pr-1)^2*(N-1)^(r-2).
5

%I #27 Mar 09 2023 17:05:00

%S 561,1105,1729,2465,2821,6601,8911,10585,11305,15841,29341,39865,

%T 41041,46657,52633,62745,63973,75361,96985,101101,115921,126217,

%U 162401,172081,188461,252601,278545,294409,314821,334153,340561,399001,401401,410041

%N Devaraj numbers: squarefree r-prime-factor (r>1) integers N=p1*...*pr such that phi(N)=(p1-1)*...*(pr-1) divides gcd(p1-1,...,pr-1)^2*(N-1)^(r-2).

%C _A.K. Devaraj_ conjectured that these numbers are exactly Carmichael numbers. It was proved (see Alekseyev link) that every Carmichael number is indeed a Devaraj number, but the converse is not true. Devaraj numbers that are not Carmichael are given by A104017.

%C These numbers can't be even, since phi(N) is always even (N>2) but p1=2 implies that gcd{pi-1}=1 and N-1 is odd. - _M. F. Hasler_, Apr 03 2009

%H Charles R Greathouse IV, <a href="/A104016/b104016.txt">Table of n, a(n) for n = 1..1000</a>

%H Max Alekseyev, <a href="http://www.mersenneforum.org/showpost.php?p=55271">Pomerance's proof</a>, June 2005.

%o (PARI) Devaraj() = for(n=2,10^8, f=factorint(n); if(vecmax(f[,2])>1,next); f=f[,1]; r=length(f); if(r==1,next); d=f[1]-1; p=f[1]-1; for(i=2,r,d=gcd(d,f[i]-1); p*=f[i]-1); if( ((n-1)^(r-2)*d^2)%p==0, print1(" ",n)) )

%o (PARI) isA104016(n)= local(f=factor(n)); vecmax(f[,2])==1 && #(f*=[1,-1]~)>1 && gcd(f)^2*(n-1)^(#f-2)%prod(i=1,#f,f[i])==0

%o /* To print the list: */ forstep( n=3, 10^6, 2, vecmax((f=factor(n))[,2])>1 && next; #(f*=[1,-1]~)>1 || next; gcd(f)^2*(n-1)^(#f-2)%prod(i=1,#f,f[i]) || print1(n","))

%o /* The following version could be efficient for large omega(n) */

%o isA104016(n) = issquarefree(n) && !isprime(n) && Mod(n-1,prod(i=1,#n=factor(n)*[1,-1]~,n[i]))^(#n-2)*gcd(n)^2==0 \\ _M. F. Hasler_, Apr 03 2009

%Y Subsequence of A350352 and hence of A033942.

%Y Cf. A104017, A002997.

%K nonn

%O 1,1

%A _Max Alekseyev_, Feb 25 2005