login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A104018
E.g.f. (arcsinh(1/sinh(arcsinh(1) - sqrt(2)*x)) - arcsinh(1))/sqrt(2).
1
0, 1, 2, 6, 28, 180, 1448, 13944, 156592, 2010000, 29026592, 465749856, 8220541888, 158283827520, 3301678947968, 74168218575744, 1785106271372032, 45828856887701760, 1250094695454351872
OFFSET
0,3
REFERENCES
D. M. Y. Sommerville, The Elements of Non-Euclidean Geometry, Dover Publications, 1958, pp. 235, 243. MR0100246 (20 #6679)
LINKS
FORMULA
Series reversion of e.g.f. A(x) is -A(-x).
E.g.f. A(x)=y satisfies y' = sinh(arcsinh(1) + sqrt(2)*y).
E.g.f.: (arcsinh(1/sinh(arcsinh(1)-sqrt(2)*x)) - arcsinh(1))/sqrt(2).
With C=sqrt(2): 1/(cosh(C*x)-C*sinh(C*x)) = 1 + 2x + 6x^2/2! + 28x^3/3! + 180x^4/4! + ... - Ralf Stephan, Mar 01 2005
G.f.: x/G(0) where G(k) = 1 - 2*x*(2*k+1) - 2*x^2*(k+1)*(k+1)/G(k+1); (continued fraction). - Sergei N. Gladkovskii, Jan 11 2013.
a(n) ~ (n-1)! * 2^((n+1)/2) / (log(3+2*sqrt(2)) * (log(1+sqrt(2)))^(n-1)). - Vaclav Kotesovec, Jan 07 2014
EXAMPLE
E.g.f. = x + x^2 + x^3 + 7/6*x^4 + 3/2*x^5 + 181/90*x^6 + 83/30*x^7 + ...
MATHEMATICA
Flatten[{0, CoefficientList[Series[1/(Cosh[Sqrt[2]*x]-Sqrt[2]*Sinh[Sqrt[2]*x]), {x, 0, 20}], x]* Range[0, 20]!}] (* Vaclav Kotesovec, Jan 07 2014 *)
a[ n_] := With[{m = n - 1}, If[ m < 1, Boole[m == 0], m! SeriesCoefficient[ 1 / Sum[ (-x)^k/k! 2^Quotient[k + 1, 2], {k, 0, m}], {x, 0, m}]]]; (* Michael Somos, Oct 03 2018 *)
PROG
(PARI) {a(n) = if( n<2, n>0, n--; n! * polcoeff( 1 / sum(k=0, n, (-x)^k/k! * 2^((k+1)\2), x * O(x^n)), n))};
CROSSREFS
Sequence in context: A136631 A002435 A276911 * A100526 A200560 A303344
KEYWORD
nonn
AUTHOR
Michael Somos, Feb 28 2005
STATUS
approved