login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A200560
E.g.f.: arcsin(x) o x/(1-x) o sin(x), a composition of functions involving sin(x) and its inverse.
3
1, 2, 6, 28, 180, 1502, 15456, 189208, 2683920, 43263962, 780807456, 15593180788, 341340941760, 8126644655222, 209050212857856, 5777935570510768, 170755837008595200, 5373097909706399282, 179351443518333574656, 6329687401322560131148, 235491796312126982538240
OFFSET
1,2
COMMENTS
Given e.g.f. A(x), then A(Pi/6) = Pi/2, where Pi/6 is the radius of convergence.
LINKS
FORMULA
E.g.f. A(x) satisfies: A(-A(-x)) = x.
The n-th iteration of e.g.f. A(x) equals: arcsin(x) o x/(1-n*x) o sin(x) = arcsin( sin(x)/(1-n*sin(x)) ).
a(n) ~ 2^n * 3^(n-1/4) * n^(n-1) / (Pi^(n-1/2) * exp(n)). - Vaclav Kotesovec, Apr 05 2016
EXAMPLE
E.g.f.: A(x) = x + 2*x^2/2! + 6*x^3/3! + 28*x^4/4! + 180*x^5/5! +...
where the initial iterations of e.g.f. A(x) begin:
A(A(x)) = arcsin( sin(x)/(1-2*sin(x)) ); more explicitly,
A(A(x)) = x + 4*x^2/2! + 24*x^3/3! + 200*x^4/4! + 2160*x^5/5! +...
A(A(A(x))) = arcsin( sin(x)/(1-3*sin(x)) ); more explicitly,
A(A(A(x))) = x + 6*x^2/2! + 54*x^3/3! + 660*x^4/4! + 10260*x^5/5! +...
A(A(A(A(x)))) = arcsin( sin(x)/(1-4*sin(x)) ); more explicitly,
A(A(A(A(x)))) = x + 8*x^2/2! + 96*x^3/3! + 1552*x^4/4! + 31680*x^5/5! +...
PROG
(PARI) {a(n)=n!*polcoeff(subst(asin(x+x*O(x^n)), x, subst(x/(1-x), x, sin(x+x*O(x^n)))), n)}
CROSSREFS
Sequence in context: A276911 A104018 A100526 * A303344 A355205 A196555
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Nov 29 2011
STATUS
approved