login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 56th year, we are closing in on 350,000 sequences, and we’ve crossed 9,700 citations (which often say “discovered thanks to the OEIS”).

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A200562 Expansion of 1 / ((1 - 2*x) * (1 + 3*x + 4*x^2)) in powers of x. 1
1, -1, 3, 3, -5, 35, -21, 51, 187, -253, 1035, -45, 91, 8099, -8277, 25203, 23035, -38845, 286539, -179949, 442267, 1490147, -2045205, 8563635, -732869, 1498499, 65544843, -68410797, 211488475, 176048675, -300358101, 2344363251, -1536690053, 3822551747, 11858974155 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,3

LINKS

G. C. Greubel, Table of n, a(n) for n = 0..2500

Index entries for linear recurrences with constant coefficients, signature (-1,2,8).

FORMULA

a(n) = -a(n-1) + 2*a(n-2) + 8*a(n-3) for all n in Z.

7*a(n) = 2^(n+1) +(-1)^n*( 5*A049072(n) -4*A049072(n-1) ). - R. J. Mathar, Nov 19 2011

a() = a(-n-3) * 2^(2*n+3) for all n in Z. - Michael Somos, Sep 17 2014

0 = a(n)*(+4*a(n+1) + 2*a(n+2)) + a(n+1)*(+a(n+1) + a(n+2)) for all n in Z. - Michael Somos, Sep 17 2014

EXAMPLE

G.f. = 1 - x + 3*x^2 + 3*x^3 - 5*x^4 + 35*x^5 - 21*x^6 + 51*x^7 + 187*x^8 + ...

MATHEMATICA

LinearRecurrence[{-1, 2, 8}, {-1, 3, 3}, 40] (* Harvey P. Dale, Aug 03 2012 *)

CoefficientList[Series[1/((1-2*x)*(1+3*x+4*x^2)), {x, 0, 50}], x] (* G. C. Greubel, Aug 13 2018 *)

PROG

(PARI) {a(n) = if( n<0, polcoeff( x^3 / ((2 - x) * (4 + 3*x + x^2)) + x * O(x^-n), -n), polcoeff( 1 / ((1 - 2*x) * (1 + 3*x + 4*x^2)) + x * O(x^n), n))}; /* Michael Somos, Sep 17 2014 */

(PARI) x='x+O('x^50); Vec(1/((1-2*x)*(1+3*x+4*x^2))) \\ G. C. Greubel, Aug 13 2018

(MAGMA) m:=25; R<x>:=PowerSeriesRing(Integers(), m); Coefficients(R!(1/((1-2*x)*(1+3*x+4*x^2)))); // G. C. Greubel, Aug 13 2018

CROSSREFS

Sequence in context: A265878 A201496 A110426 * A093310 A256402 A170919

Adjacent sequences:  A200559 A200560 A200561 * A200563 A200564 A200565

KEYWORD

sign,easy

AUTHOR

Krishnamurthy Balasubraniam, Nov 19 2011

EXTENSIONS

Definition from R. J. Mathar, Nov 19 2011

Added a(0) = 1. - Michael Somos, Sep 17 2014

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 9 08:41 EST 2021. Contains 349627 sequences. (Running on oeis4.)