|
|
A200562
|
|
Expansion of 1 / ((1 - 2*x) * (1 + 3*x + 4*x^2)) in powers of x.
|
|
1
|
|
|
1, -1, 3, 3, -5, 35, -21, 51, 187, -253, 1035, -45, 91, 8099, -8277, 25203, 23035, -38845, 286539, -179949, 442267, 1490147, -2045205, 8563635, -732869, 1498499, 65544843, -68410797, 211488475, 176048675, -300358101, 2344363251, -1536690053, 3822551747, 11858974155
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,3
|
|
LINKS
|
|
|
FORMULA
|
a(n) = -a(n-1) + 2*a(n-2) + 8*a(n-3) for all n in Z.
a() = a(-n-3) * 2^(2*n+3) for all n in Z. - Michael Somos, Sep 17 2014
0 = a(n)*(+4*a(n+1) + 2*a(n+2)) + a(n+1)*(+a(n+1) + a(n+2)) for all n in Z. - Michael Somos, Sep 17 2014
|
|
EXAMPLE
|
G.f. = 1 - x + 3*x^2 + 3*x^3 - 5*x^4 + 35*x^5 - 21*x^6 + 51*x^7 + 187*x^8 + ...
|
|
MATHEMATICA
|
LinearRecurrence[{-1, 2, 8}, {-1, 3, 3}, 40] (* Harvey P. Dale, Aug 03 2012 *)
CoefficientList[Series[1/((1-2*x)*(1+3*x+4*x^2)), {x, 0, 50}], x] (* G. C. Greubel, Aug 13 2018 *)
|
|
PROG
|
(PARI) {a(n) = if( n<0, polcoeff( x^3 / ((2 - x) * (4 + 3*x + x^2)) + x * O(x^-n), -n), polcoeff( 1 / ((1 - 2*x) * (1 + 3*x + 4*x^2)) + x * O(x^n), n))}; /* Michael Somos, Sep 17 2014 */
(PARI) x='x+O('x^50); Vec(1/((1-2*x)*(1+3*x+4*x^2))) \\ G. C. Greubel, Aug 13 2018
(Magma) m:=25; R<x>:=PowerSeriesRing(Integers(), m); Coefficients(R!(1/((1-2*x)*(1+3*x+4*x^2)))); // G. C. Greubel, Aug 13 2018
|
|
CROSSREFS
|
|
|
KEYWORD
|
sign,easy
|
|
AUTHOR
|
|
|
EXTENSIONS
|
|
|
STATUS
|
approved
|
|
|
|