login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

E.g.f.: arcsin(x) o x/(1-x) o sin(x), a composition of functions involving sin(x) and its inverse.
3

%I #24 Apr 05 2016 07:40:09

%S 1,2,6,28,180,1502,15456,189208,2683920,43263962,780807456,

%T 15593180788,341340941760,8126644655222,209050212857856,

%U 5777935570510768,170755837008595200,5373097909706399282,179351443518333574656,6329687401322560131148,235491796312126982538240

%N E.g.f.: arcsin(x) o x/(1-x) o sin(x), a composition of functions involving sin(x) and its inverse.

%C Given e.g.f. A(x), then A(Pi/6) = Pi/2, where Pi/6 is the radius of convergence.

%H Vaclav Kotesovec, <a href="/A200560/b200560.txt">Table of n, a(n) for n = 1..250</a>

%F E.g.f. A(x) satisfies: A(-A(-x)) = x.

%F The n-th iteration of e.g.f. A(x) equals: arcsin(x) o x/(1-n*x) o sin(x) = arcsin( sin(x)/(1-n*sin(x)) ).

%F a(n) ~ 2^n * 3^(n-1/4) * n^(n-1) / (Pi^(n-1/2) * exp(n)). - _Vaclav Kotesovec_, Apr 05 2016

%e E.g.f.: A(x) = x + 2*x^2/2! + 6*x^3/3! + 28*x^4/4! + 180*x^5/5! +...

%e where the initial iterations of e.g.f. A(x) begin:

%e A(A(x)) = arcsin( sin(x)/(1-2*sin(x)) ); more explicitly,

%e A(A(x)) = x + 4*x^2/2! + 24*x^3/3! + 200*x^4/4! + 2160*x^5/5! +...

%e A(A(A(x))) = arcsin( sin(x)/(1-3*sin(x)) ); more explicitly,

%e A(A(A(x))) = x + 6*x^2/2! + 54*x^3/3! + 660*x^4/4! + 10260*x^5/5! +...

%e A(A(A(A(x)))) = arcsin( sin(x)/(1-4*sin(x)) ); more explicitly,

%e A(A(A(A(x)))) = x + 8*x^2/2! + 96*x^3/3! + 1552*x^4/4! + 31680*x^5/5! +...

%o (PARI) {a(n)=n!*polcoeff(subst(asin(x+x*O(x^n)), x, subst(x/(1-x), x, sin(x+x*O(x^n)))), n)}

%K nonn

%O 1,2

%A _Paul D. Hanna_, Nov 29 2011