Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #26 Oct 03 2018 03:21:50
%S 0,1,2,6,28,180,1448,13944,156592,2010000,29026592,465749856,
%T 8220541888,158283827520,3301678947968,74168218575744,
%U 1785106271372032,45828856887701760,1250094695454351872
%N E.g.f. (arcsinh(1/sinh(arcsinh(1) - sqrt(2)*x)) - arcsinh(1))/sqrt(2).
%D D. M. Y. Sommerville, The Elements of Non-Euclidean Geometry, Dover Publications, 1958, pp. 235, 243. MR0100246 (20 #6679)
%H G. C. Greubel, <a href="/A104018/b104018.txt">Table of n, a(n) for n = 0..417</a>
%F Series reversion of e.g.f. A(x) is -A(-x).
%F E.g.f. A(x)=y satisfies y' = sinh(arcsinh(1) + sqrt(2)*y).
%F E.g.f.: (arcsinh(1/sinh(arcsinh(1)-sqrt(2)*x)) - arcsinh(1))/sqrt(2).
%F With C=sqrt(2): 1/(cosh(C*x)-C*sinh(C*x)) = 1 + 2x + 6x^2/2! + 28x^3/3! + 180x^4/4! + ... - _Ralf Stephan_, Mar 01 2005
%F G.f.: x/G(0) where G(k) = 1 - 2*x*(2*k+1) - 2*x^2*(k+1)*(k+1)/G(k+1); (continued fraction). - _Sergei N. Gladkovskii_, Jan 11 2013.
%F a(n) ~ (n-1)! * 2^((n+1)/2) / (log(3+2*sqrt(2)) * (log(1+sqrt(2)))^(n-1)). - _Vaclav Kotesovec_, Jan 07 2014
%e E.g.f. = x + x^2 + x^3 + 7/6*x^4 + 3/2*x^5 + 181/90*x^6 + 83/30*x^7 + ...
%t Flatten[{0,CoefficientList[Series[1/(Cosh[Sqrt[2]*x]-Sqrt[2]*Sinh[Sqrt[2]*x]), {x, 0, 20}], x]* Range[0, 20]!}] (* _Vaclav Kotesovec_, Jan 07 2014 *)
%t a[ n_] := With[{m = n - 1}, If[ m < 1, Boole[m == 0], m! SeriesCoefficient[ 1 / Sum[ (-x)^k/k! 2^Quotient[k + 1, 2], {k, 0, m}], {x, 0, m}]]]; (* _Michael Somos_, Oct 03 2018 *)
%o (PARI) {a(n) = if( n<2, n>0, n--; n! * polcoeff( 1 / sum(k=0, n, (-x)^k/k! * 2^((k+1)\2), x * O(x^n)), n))};
%K nonn
%O 0,3
%A _Michael Somos_, Feb 28 2005