login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A103400 Semiprimes in A103380. 2
4, 9, 15, 21, 33, 38, 58, 65, 86, 106, 121, 129, 265, 511, 2047, 2049, 4097, 4109, 8193, 17855, 19857, 34709, 66233, 104739, 130953, 131209, 140474, 220918, 258931, 511673, 540951 (list; graph; refs; listen; history; text; internal format)
OFFSET
1,1
COMMENTS
These semiprimes are elements of the k=12 case of the family of sequences whose k=1 case is the Fibonacci sequence A000045, k=2 case is the Padovan sequence A000931 (offset so as to begin 1,1,1), k=3 case is A079398 (offset so as to begin 1,1,1,1), k=4 case is A103372, k=5 case is A103373, k=6 case is A103374, k=7 case is A103375, k=8 case is A103376, k=9 case is A103377, k=10 case is A103378 and k=11 case is A103379. The general case for integer k>1 is defined: a(1) = a(2) = ... = a(k+1)= 1 and for n>(k+1) a(n) = a(n-k) + a(n-[k+1]). For this k=12 case, the ratio of successive terms a(n)/a(n-1) approaches the unique positive root of the characteristic polynomial: x^13 - x - 1 = 0. This is the real constant 1.0570505752212283848816867278047539300461075... . Note that x = (1 + (1 + (1 + (1 + (1 + ...)^(1/12))^(1/12)))^(1/12))))^(1/12)))))^(1/12))))). The sequence of prime values in this k=12 case is A103390; This sequence of semiprime values in this k=12 case is A103400.
REFERENCES
A. J. van Zanten, The golden ratio in the arts of painting, building and mathematics, Nieuw Archief voor Wiskunde, 4 (17) (1999) 229-245.
LINKS
J.-P. Allouche and T. Johnson, Narayana's Cows and Delayed Morphisms
E. S. Selmer, On the irreducibility of certain trinomials, Math. Scand., 4 (1956) 287-302.
J. Shallit, A generalization of automatic sequences, Theoretical Computer Science, 61 (1988) 1-16.
FORMULA
Intersection of A103380 and A001358, where A103380 is: for n>13: a(n) = a(n-12) + a(n-13). a(1) = a(2) = a(3) = a(4) = a(5) = a(6) = a(7) = a(8) = a(9) = a(10) = a(11) = a(12) = 1.
MAPLE
A103380 := proc(n) option remember ; if n <= 13 then 1; else procname(n-12)+procname(n-13) ; fi; end: isA103380 := proc(n) option remember ; local i ; for i from 1 do if A103380(i) = n then RETURN(true) ; elif A103380(i) > n then RETURN(false) ; fi; od: end: A103400 := proc(n) option remember ; local a, i ; if n = 1 then 4; else for a from procname(n-1)+1 do if numtheory[bigomega](a) = 2 then if isA103380(a) then RETURN(a) ; fi; fi; od: fi; end: for n from 1 to 37 do printf("%d, ", A103400(n)) ; od: # R. J. Mathar, Aug 30 2008
MATHEMATICA
SemiprimeQ[n_]:=Plus@@FactorInteger[n][[All, 2]]?2; Clear[a]; k12; Do[a[n]=1, {n, k+1}]; a[n_]:=a[n]=a[n-k]+a[n-k-1]; A103379=Array[a, 100] A103389=Union[Select[Array[a, 1000], PrimeQ]] A103399=Union[Select[Array[a, 300], SemiprimeQ]] N[Solve[x^12 - x - 1 == 0, x], 111][[2]] (* Program, edit and extension by Ray Chandler and Robert G. Wilson v *)
CROSSREFS
Sequence in context: A162801 A335250 A103396 * A103399 A103398 A103397
KEYWORD
easy,nonn
AUTHOR
Jonathan Vos Post, Feb 16 2005
EXTENSIONS
Corrected from a(15) on by R. J. Mathar, Aug 30 2008
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified March 5 02:31 EST 2024. Contains 370537 sequences. (Running on oeis4.)