login
A103398
Semiprimes in A103378.
2
4, 9, 15, 21, 33, 38, 58, 65, 86, 106, 121, 129, 265, 511, 2047, 2049, 4109, 16293, 16489, 17855, 19857, 32678, 34709, 66217, 104739, 220918, 240367, 262298, 293323, 954413, 2082999, 3145729, 3498467, 4296813, 16442015, 18037939, 21317326
OFFSET
1,1
FORMULA
Intersection of A103378 with A001358.
MAPLE
A103378 := proc(n) option remember; if n <= 11 then 1 ; else procname(n-10)+procname(n-11) ; fi ; end proc:
a78prev := -1 ; for n from 1 to 400 do a78 := A103378(n) ; if numtheory[bigomega](a78) = 2 and a78 <> a78prev then printf("%d, ", a78) ; end if; a78prev := a78 ; end do: # R. J. Mathar, Jun 11 2010
MATHEMATICA
SemiprimeQ[n_]:=Plus@@FactorInteger[n][[All, 2]]?2; Clear[a]; k=10; Do[a[n]=1, {n, k+1}]; a[n_]:=a[n]=a[n-k]+a[n-k-1]; A103377=Array[a, 100] A103387=Union[Select[Array[a, 1000], PrimeQ]] A103397=Union[Select[Array[a, 300], SemiprimeQ]] N[Solve[x^11 - x - 1 == 0, x], 111][[2]] (* Ray Chandler and Robert G. Wilson v *)
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Jonathan Vos Post, Feb 15 2005
EXTENSIONS
Edited and extended by Ray Chandler and Robert G. Wilson v
Entries >511 corrected by R. J. Mathar, Jun 11 2010
STATUS
approved