login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A103388
Primes in A103378.
3
2, 3, 5, 7, 17, 31, 71, 127, 157, 227, 257, 293, 349, 419, 503, 32299, 33343, 72421, 80429, 134269, 140473, 252761, 2499061, 201329923, 607488611, 1005428989, 2920552289, 8185638173, 10676478541, 14058719281, 15985335181, 34020175663, 159315910211, 1448256661853
OFFSET
1,1
FORMULA
Intersection of A103378 with A000040.
MAPLE
A103378 := proc(n) option remember ; if n <= 11 then 1; else procname(n-10)+procname(n-11) ; fi; end: isA103378 := proc(n) option remember ; local i ; for i from 1 do if A103378(i) = n then RETURN(true) ; elif A103378(i) > n then RETURN(false) ; fi; od: end: A103388 := proc(n) option remember ; local a; if n = 1 then 2; else a := nextprime(procname(n-1)) ; while true do if isA103378(a) then RETURN(a) ; fi; a := nextprime(a) ; od: fi; end: for n from 1 to 37 do printf("%d, ", A103388(n)) ; od: # R. J. Mathar, Aug 30 2008
MATHEMATICA
Clear[a]; k=10; Do[a[n]=1, {n, k+1}]; a[n_]:=a[n]=a[n-k]+a[n-k-1]; A103387=Union[Select[Array[a, 1000], PrimeQ]] (* See A103377 and A103397 for code related to those. - M. F. Hasler, Sep 19 2015, . *)
PROG
(PARI) {a=vector(m=10, n, 1); L=0; for(n=m, 10^5, isprime(a[i=n%m+1]+=a[(n+1)%m+1]) && L<a[i] && print1(L=a[i]", "))} \\ M. F. Hasler, Sep 19 2015
CROSSREFS
Sequence in context: A103385 A103389 A103387 * A103386 A103384 A103383
KEYWORD
easy,nonn
AUTHOR
Jonathan Vos Post, Feb 15 2005
EXTENSIONS
Corrected from a(16) on by R. J. Mathar, Aug 30 2008
Edited and more terms added by M. F. Hasler, Sep 19 2015
STATUS
approved