login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A103318
Number of solutions i in range [0,n-1] to i == 0 mod 2^(n-i).
5
1, 1, 2, 1, 2, 2, 2, 1, 2, 2, 3, 1, 2, 2, 2, 1, 2, 2, 3, 2, 2, 2, 2, 1, 2, 2, 3, 1, 2, 2, 2, 1, 2, 2, 3, 2, 3, 2, 2, 1, 2, 2, 3, 1, 2, 2, 2, 1, 2, 2, 3, 2, 2, 2, 2, 1, 2, 2, 3, 1, 2, 2, 2, 1, 2, 2, 3, 2, 3, 3, 2, 1, 2, 2, 3, 1, 2, 2, 2, 1, 2, 2, 3, 2, 2, 2, 2, 1, 2, 2, 3, 1, 2, 2, 2, 1, 2, 2, 3
OFFSET
1,3
COMMENTS
i=0 is always a solution.
a(n) is the number of 1's in (A103745(n) written in base 2). - Philippe Deléham, Apr 02 2005
LINKS
David Applegate, Benoit Cloitre, Philippe Deléham and N. J. A. Sloane, Sloping binary numbers: a new sequence related to the binary numbers [pdf, ps].
FORMULA
a(n) = A104234(2^n - n). - Philippe Deléham, Apr 21 2005
EXAMPLE
For n = 11 solutions are i = 0, 8 and 10. Four solutions occur for the first time at n = 2059: they are i = 0, 2048, 2056, 2058. Five solutions occur for the first time at n = 2^2059 + 2059 (see A034797).
MAPLE
f:= proc (n) local t1, l; t1 := 0; for l to n do if `mod`(n-l, 2^l) = 0 then t1 := t1+1 end if end do; t1 end proc;
MATHEMATICA
f[n_] := Block[{c = 1, k = Max[1, n - Floor[ Log[2, n] + 2]]}, While[k < n, If[ Mod[k, 2^(n - k)] == 0, c++ ]; k++ ]; c]; Table[ f[n], {n, 105}] (* Robert G. Wilson v, Mar 21 2005 *)
CROSSREFS
For records see A034797. Cf. A103745.
Sequence in context: A330617 A343240 A145866 * A197775 A002321 A043530
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Mar 21 2005
STATUS
approved