login
A103321
Expansion of 1 / ((1-x-x^2-x^3)*(1-x-x^3)).
1
1, 2, 4, 9, 18, 35, 68, 130, 246, 463, 867, 1617, 3007, 5579, 10332, 19107, 35295, 65140, 120137, 221444, 407999, 751453, 1383641, 2547116, 4688106, 8627504, 15875390, 29209560, 53739655, 98864470, 181872110, 334561861, 615423932
OFFSET
0,2
REFERENCES
A. T. Benjamin and J. J. Quinn, Proofs that really count: the art of combinatorial proof, M.A.A. 2003, p. 47, ex. 4.
FORMULA
a(n) = A000073(n+4) - A000930(n+2).
a(n) = Sum_{k=0..n} A000073(k+2)*A000930(n-k).
a(0)=1, a(1)=2, a(2)=4, a(3)=9, a(4)=18, a(5)=35, a(n)=2*a(n-1)+a(n-3)- 2*a(n-4)-a(n-5)-a(n-6). - _Harvey P. Dale_, Nov 06 2011
MATHEMATICA
CoefficientList[Series[1/((1-x-x^2-x^3)(1-x-x^3)), {x, 0, 40}], x] (* or *) LinearRecurrence[{2, 0, 1, -2, -1, -1}, {1, 2, 4, 9, 18, 35}, 40] (* _Harvey P. Dale_, Nov 06 2011 *)
PROG
(PARI) x='x+O('x^50); Vec(1/((1-x-x^2-x^3)*(1-x-x^3))) \\ _G. C. Greubel_, May 02 2017
CROSSREFS
Sequence in context: A046683 A065055 A065030 * A138196 A298404 A101351
KEYWORD
nonn
AUTHOR
_Ralf Stephan_, Feb 02 2005
STATUS
approved