login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A103322
Expansion of 1 / ((1-x-x^2-x^3)*(1-x^2-x^3)).
1
1, 1, 3, 6, 11, 22, 41, 77, 144, 267, 495, 915, 1689, 3115, 5740, 10572, 19464, 35825, 65926, 121301, 223166, 410544, 755211, 1389186, 2555292, 4700154, 8645248, 15901510, 29247993, 53796183, 98947583, 181994272, 334741367, 615687632
OFFSET
0,3
REFERENCES
A. T. Benjamin and J. J. Quinn, Proofs that really count: the art of combinatorial proof, M.A.A. 2003, p. 47, ex. 4.
FORMULA
a(n) = A000073(n+3) - A000930(n+4).
a(n) = Sum_{k=0..n} A000073(k+2)*A000930(n-k+3).
a(n) = a(n-1) + 2*a(n-2) +a(n-3) - 2*a(n-4) - 2*a(n-5) - a(n-6). - G. C. Greubel, May 02 2017
MATHEMATICA
CoefficientList[Series[1/((1 - x - x^2 - x^3)*(1 - x^2 - x^3)), {x, 0, 50}], x] (* G. C. Greubel, May 02 2017 *)
PROG
(PARI) x='x+O('x^50); Vec(1/((1 - x - x^2 - x^3)*(1 - x^2 - x^3))) \\ G. C. Greubel, May 02 2017
CROSSREFS
Sequence in context: A228206 A195734 A018177 * A284474 A117075 A024506
KEYWORD
nonn
AUTHOR
Ralf Stephan, Feb 02 2005
STATUS
approved